2018 年度版

動物生理学実験

中央大学理工学部生命科学科

A. 光学顕微鏡観察と画像処理技術

B. キイロショウジョウバエの形態観察

C. 神経興奮の観察と解析

D. ウニの初期発生の観察 · 精子除膜モデルの運動観察

科目担当:上村慎治·中原美奈

執筆協力:和田祐子・今井 洋

skam@bio.chuo-u.ac.jp

http://www.bio.chuo-u.ac.jp/nano/

目 次	
-----	--

A-1 ~ A-35	(実験 A)	光学顕微鏡観察と画像処理技術
A-Suppl-1 ~ 9	光学顕微鏡	のしくみ
B-1 ~ B-10	(実験 B)	キイロショウジョウバエの形態観察
C-1 ~ C-27	(実験 C)	筋電図・神経興奮の記録と解析
C-Suppl-1 ~ 12	神経標本の	作り方・興奮の伝導と伝達・演習課題
D-1 ~ D-3	(実験 D-1)	ウニの初期発生の観察
D-4 ~ D-10	(実験 D-2)	精子除膜モデルの運動観察
統計-1~5	統計学入門	測定と誤差について
統計-6~9	統計学入門	最小二乗法と直線回帰
統計-10~13	統計学入門	ソルバー機能を使った最小二乗法

動物生理学実験 A

光学顕微鏡観察と画像処理技術習得

この実習は、光学顕微鏡の「分解能[#]」や「コントラスト[#]」について理解すること、そし て、いくつかの基礎的な画像処理技術を習得し、それを光学顕微鏡の観察に応用することを 目標にしています。ここで演習する画像解析法は、今回の実験だけではなく、タンパク質や DNA の電気泳動結果の定量的な解析、記録画像中の周期構造の解析、経時的な変化を記録し た動画の解析など、非常に幅広い分野でも応用できる手法です。この機会に習得して、さま ざまな場面でも活用できるようにしてください。

この実験Aは、すべて演習実施形式です。課題を順番に実施して行きます。多くは、ソフトの複雑なコマンドを忠実に実行するだけの作業ですが、中には、考えなければならない考察問題もあります。決められた手順に従って作業を進めると、自動的に結果が出るようになっています。第1段階の課題とでは、用いる画像処理ソフトの演習です。その後、課題とでは、光学顕微鏡を使った応用実験を実施します。レポートは、演習課題に1つ1つ解答する形で完成させて行きます。テキストの文中にある番号、Q1-1 ~ Q3-1、Q4-1 などは、例題や設問の番号を示しています。どの課題番号に対応する解答か、レポート作成時には、必ず明記してください^[注 1]。

^[注1] 課題 ~ は、実習期間(3日間)中に、この順番で実施します。各自のペースで実施して、実験Aの実施最終日18:00までに、作業の進んだ範囲をまとめて、レポート(MS Wordのファイル)としてメール添付で提出します(課題レポートのファイル名、およびメール送信方法についての詳細はA-26とA-27ページを参照)。

^[#]この章の最後(A34-35)に用語解説のある語句

この実験で用いる、あるいは、持参する物品・機器類のリスト 【 ~ 】は課題番号 (印はグループ、または、各実験机で1つの品物)

各自持参するもの	実験ノート【 ~ 】	筆記用具【	~]
	白衣【 ~ 】	名札【	~]
	PC 用マウス (使い慣れたものを	を使いたい場合)【	~]

共通物品机上から	ケイソウプレパラート【 ・	】 CCD カメラ【 ・ ・ 】
	USB ケーブル【 ・ ・ 】	USB メモリー【 以降、要返却】
	ハサミ 【 】	カッターナイフ 【 】
	タマネギ 【 】	70%アルコール 【 ~ 】
	キムワイプ 【 ~ 】	スライドガラス・カバーガラス【 】
	スポイトとピンセット 【 】	遮光用黒紙 【 】
	収納用のプラスチック容器【	~]
	対物マイクロメーター【 ~	、必要に応じて】

- コンピュータ専用棚から ノートパソコン【 ~ 】 コンピュータ用電源【 ~ 】
- 顕微鏡専用棚から 顕微鏡 (Olympus CX41) 【 ・ ・ 、指定された番号のもの】

課題 光学顕微鏡観察と CCD カメラ撮影方法の習得

はじめに

光学顕微鏡は、対象となる生物試料を拡大して観察する便利な道具ですが、1つ大きな欠点があります。 分解能[#]に限界のあることです。ここでは、実験を通して、顕微鏡の分解能と、合わせてもう一つの重要 なパラメータであるコントラストとはどのようなものか、理解することが目的です。デジタルカメラ(USB カメラ)を使った顕微鏡像の簡単な撮影方法も修得します。

まず、分解能#とコントラスト#の違いを考えてみます。下の4つの像の違いは何でしょうか?

mv.avex.jp/ga/news.html

aが一番はっきり見えますが、bは淡く、cはボケています。dはボケている上に、さらに全体が淡くなって見えます。bやdのような画像をコントラストの悪い画像といいます。コントラストとは、画像の中で一番明るい部分と暗い部分の差に相当します。cやdでは、微細な部分が見えなくなっていますが、このような画像を解像度の低い(悪い)、あるいは、分解能の悪い(低い)画像と呼びます。分解能とは、像の鮮明さを示す指標です。厳密には、ある2点間の区別可能な最小距離で、それより接近すると識別できなくなる限界の距離として定義されています(本章の後に続く「補遺:光学顕微鏡のしくみ」参照)。解像度は、分解能と同義、あるいは、その逆数に相当する数値を用いることがあります。課題 で出てくる「空間周波数[#](単位長さ当たりで何本の縞模様かを示す数値)」も分解能[#]や解像度[#]を示す指標として使われます。

以下に続く「() 光学顕微鏡基本操作」では、実際の顕微鏡の像を観察して、それが上図 a~d のどれ に相当するのか、あるいは、得られた像をb~dからできるだけ a に近い観察像にするには、どのような 工夫が必要か、それを習得します。上にある画像の比較は肉眼でも、およその違いはわかります。しかし、 正確に数値に置き換えての定量的な議論は不可能です。そのために、まず、観察像をコンピュータに取り 込むことにします。コンピュータを使うことで、より詳しい画像の解析や議論が可能となります。「() デ ジタルカメラ基本操作」では、顕微鏡の画像を、CCD カメラを使ってコンピュータに取り込む練習をしま す。作業手順を十分修得して、静止画や動画をコンピュータに取り込む作業に慣れるようにします。ここ で練習する作業は、A-26 ページの課題 以降の実習で実際に応用することになります。

() 光学顕微鏡基本操作 (参考資料: 補遺資料「CX41 取り扱い説明書」)

- 光学顕微鏡を使った観察を始めます。光学顕微鏡(実習用生物顕微鏡)は、自分の指定された出席番号(実習参加者にふられた番号)のものを使います。精密な機械なので、必ず両手で持ち運びます。 落としたり、ぶつけたりしないように注意しながら、各自の実験机まで移動し、電源コードを接続します。電源コードを接続する側と反対側の「OLYMPUS(黒色)」のマークのある方を手前にして置きます。顕微鏡の番号を各自の実験ノートに記録します(以下、【】の中の番号と名称は、A7ページの顕微鏡模式図を参照)。
- OLYMPUS CX41」と書かれた青いラベルと同じ側面にあるネジ(銀色の小さめの手回しネジ)をゆるめます。このネジをゆるめると接眼レンズの鏡筒部分(顕微鏡の上部で斜めの接眼レンズが付いている箇所)が回転できるようになります(*このネジは、添付模式図の中にはない特注部品です。ネジの場所がわからないときは、無理に鏡筒部を廻さずに、担当者に質問します)。
- 3. 鏡筒部を回転させて、接眼レンズが手前に向くようにして、上のネジを軽く締めます(締めすぎない ように要注意)。観察試料は、ケイソウの細胞の標本(DIATOM TEST PLATE, 8 FORMS と書かれた右 上写真のようなプレパラート[#])です。共通物品を置いた机(共通物品机)上から、各自1枚ずつ取り ます。このプレパラート[#]は、スライドガラスの中心に、左上の写真のようにケイソウ[#]の標本が並ん でいます。細胞壁だけが残るように化学処理したケイソウ細胞標本です。
- ケイソウの細胞の特徴は、細胞壁の表面に一定間隔の規則的な縞模様があり、そのパターンや間隔が種ごとに異なる点です。次ページの表には、細胞のおよその大きさ(個体差あり)10µm あたりに模様が何本あるか(空間周波数[#]という)縞模様間の距離(周期という)および、走査電子顕微鏡観察[#]で調

べて測定した正確な周期の値(有効数字の違いに注意)をまとめてあります。この数値は、今後の観 察や解析のときの参考にします。

5. このプレパラート[#]に表と裏があることを確認して、表(ラベルのある方、丸いカバーガラスのある方) を上にして、顕微鏡の試料台の上に載せます。プレパラート[#]は、銀色のレバー【 クレンメル】に挟 むようにしてしっかり固定します。試料を移動させる時は、右側についている縦方向のハンドル 縦送り・横送りハンドル】を使います。プレパラート内には 8 個のケイソウ細胞しかないので、顕微 鏡で見つけ出すにはそれなりの工夫が必要です。まず、一番倍率の低い対物レンズ(Plan C N 10x/0.25 Ph1 /- と側面に書かれています)を使い、その対物レンズの真下に、円形のカバーガラスの中心付 近に来るようにします。

		細胞表面の周期構造							
		光学顕微	鏡データ	走査電子	顕微鏡観察での諸	ŧ細データ			
種名	およその細胞の長 さ	10µm当たりの本数	周期(μm)	平均值	標準偏差	標準誤差			
Gyrosigma balticum	~280	15	0.66						
Navicula lyra	~160	8	1.25						
Stauroneis phoenoceneron		14	0.71						
Nitzschia sigma	~200	23	0.43						
Surireila gemma	70-140	20	0.5	22.66-24.36	0.824-1.550	0.180-0.323			
Pleurosigma angulatum	150-360	18-20	0.52	15.95-16.60	0.767-0.810	0.130-0.137			
Frustulia rhomboides	~50	34	0.29						
Amphipleura pellucida	150-360	37-40	0.27	35.65-37.47	0.497-0.730	0.084-0.133			

- 6. 「OLYMPUS CX41」と書かれた青いラベルの下に、電源スイッチ【 メインスイッチ】と、明るさを 変えるツマミ(1~5の目盛り【 調光つまみ】)があります。電源スイッチを on にして、接眼レンズ を覗いて適度の明るさとなるように、調光つまみで調節します(ここでは、後述のコンデンサターレ ットを廻して【0】の表示の箇所で使用)。プレパラートは、長く照明を続けると温度が上昇し、封入 してある特殊な樹脂が融解し、試料にダメージを与えます。観察しないとき、席を外すときは、必ず 電源を切るようにします。
- 7. プレパラートの中心には、丸いマークが描いてあり、そのほぼ中心に、上の写真の順番で(上下逆の 場合もあります)ケイソウが並んでいます。顕微鏡で観察しながら、まず、そのマークや丸いやカバ ーガラスの縁に、焦点を合わせます。その後、その中心を探してケイソウの細胞を見つけます。対物 レンズの先端部分が試料から 10~13mm の高さとなる位置が、焦点のほぼ合う位置です(<u>*この位置</u> <u>を、感覚的に把握しておくと、今後の作業がスムーズに進みます</u>)。
- 焦点が合わない、あるいは、ケイソウ が見つからない、ケイソウの配置がバ ラバラになっているなどの問題があっ た場合、担当者に相談します。

次に、左右の接眼レンズの幅(55~75

mm)を自分の眼幅に合わせます。左右2つの像が重なって見えるちょうど良い目幅にします。

10. ここで、視度調節も行います。これは左右の視力差を補正する作業です。右側の接眼レンズで観察し ながら、試料のある1点(小さなゴミや粒などが良い)に焦点を合わせます。次に、同じものが左側 の接眼レンズでも、できるだけ同じように観察できるように、接眼レンズの付け根にあるツマミ(・・+・・ 0・・・・の目盛り付き 【 視度調節環】) で調節します。左右の眼で同時に観察することが難しい場合、 無理に両目を使う必要はありません。両眼か、片眼かは、特に観察精度上の問題はありません。「像が 見えない」、「左右の倍率が異なる」、「片方が見えない」、「ゴミが多い」、「くもって見えて焦点が合わ ない」などの、気付いた点がある場合には、担当者に伝えます。

- 11. この時点で、次の4つの<u>下線を引いた箇所</u>の名称、および、その場所を、しっかり覚えます。続く顕 微鏡の調整には大変重要な名称です。
 - a. コンデンサレンズ[#]は、試料台の直下にあるレンズです。試料台の下、右側の黒いツマミ【 コン デンサ上下動ハンドル】で上下調節します。このレンズは、通常、もっとも高い位置、つまり、 上面が試料のプレパラートにほぼ接する位置で使用します。後述の操作で、正確な位置を微調整 します。
 - b. ここで使用するコンデンサレンズ[#]は位相差顕微鏡用[#]のもので【型名:CX-PCD】、手前側に<u>ターレット</u>と呼ばれる。滑り止めの刻み模様(凹凸)が付いています。右に廻すと、順番に【0】 【Ph1】 【Ph2】 【Ph3】 【DF】 【0】 ・・・と小窓の表示が変わります。それぞれの記号や番号の場所でカチッと音がして、停止できるようになっています。はじめは【0】(明視野照明[#]条件)で使用します。
 - c. このターレットの下面側に、手前に向けて、黒いレバーが付いています。先端が下側に折れ曲が ったレバーで、左右に振れる構造です。これは「<u>コンデンサ絞り</u>[#]」を開閉するレバーです。この 絞りは、別名「開口絞り[#]」とも呼びます。レバーを左 右に動かすと、コンデンサレンズの内部 にある絞りが開 閉します。上のターレットが【0】(明視野照明[#]条件)以外では、この絞りは全 開にして使います。
 - d. 試料台の下「OLYMPUS」のマークの反対側に、光源からの光の出口(射出孔)があります。その出口側面にも、刻みの付いたツマミがあり、左右に廻せます。これは「視野絞り[#]」を開閉する ツマミで、左 右に廻すと、顕微鏡の下部土台の内部にある別の絞りが開 閉します。
- 12. ケイソウが観察できているのを確認し、視野絞り[#]を一番小さく絞ります。周辺部に、黒い枠(絞りの ふち)が見えますか?見えない場合、コンデンサ[#]を側面にある黒いツマミ【 コンデンサ上限ハンド ル】を廻しながら、上下に微調整し、明瞭に絞りの枠が接眼レンズを通して観察できる位置にします。
- 13. コンデンサの位置を上下に微調節すると、観察試料の中心付近に12角形の絞りの形が明瞭に見える場所があります。視野絞り[#]の意味がここで理解できます。ちょうど観察したい箇所だけを明るく照明し、その範囲を調整する絞りとなります。コンデンサレンズは、この視野絞りが明瞭に観察できる位置で使用します。
- 14. 視野絞りが、視野全体の中心にない場合、コンデンサレンズの下側、左右手前に向かって一対ある銀色のつまみ【補助レンズ心出しつまみ】で調節します。ほぼ中心が合っていれば十分です。この位置が多少ずれていても、観察する像の質は大きくは変わりません。視野絞りは、視野全体に開けて、ケラレ[#](絞りの影が見える状態)のない位置で使うのが一般的です。ここまで来たら、対物レンズの倍率を他のものに変えても大丈夫です。×20、×40倍と変えて、その度に、焦点[#]が多少ずれるので【微動バンドル】を使い焦点を合わせて観察します。
- 15. 次に、ターレットが【0】の明視野照明、および視野絞りは一定のままで、コンデンサ絞りのみを開閉 します。明るさが劇的に変わりますが、調光つまみ【 】を使って、もっとも観察しやすい明るさに

します。このとき観察像のコントラストは、どのように変化しますか?倍率によって、その変化にも 違いありますか?注意深く観察し気付いたことをレポートに記載します<Q1-1>。コンデンサ絞りは いつも一定の開閉状態で使うものではなく、対物レンズの倍率によって異なる最適の状態があります。 また、肉眼で観察するとき、あとで修得する CCD カメラで撮影するときでも、最適な状態が微妙に変 わります。ここでは、顕微鏡像の解像度[#](分解能[#])についての理論的な背景は特に紹介しませんが、 まずは、自分の眼を信じ、試料の細かな部分を明瞭に観察する上で、一番良いと思われる開口絞りの 条件を、像の倍率が変えるたびに、こまめに調節するように心がけます。

- 16. この顕微鏡には、以下のような対物レンズと照明条件が選択できます。それぞれの組み合わせで、どのような観察像になるか、比較します (レポート記載不要)。
 - 対物レンズの種類PlanC N 10x/0.25 Ph1/-/FN22、PlanC N 20x/0.40 Ph1/0.17/FN22PlanC N 40x/0.65 Ph2/0.17/FN22
 - コンデンサターレットの選択
 - 【0】 明視野照明用[#]、【Ph1】10x、20x 用の位相差用[#]、【Ph2】40x の位相差用[#]、
 【Ph3】100x の位相差用[#]、【DF】暗視野照明用[#]

() デジタルカメラ基本操作

- 1. 次に、CCD カメラ[#](USB デジタルカメラ)による撮影方法を練習します。ここで用いる USB カメ ラ[#]は、光学顕微鏡用に設計されたもので、接眼レンズの代わりに、顕微鏡本体に挿入して用います。
- 2. 共通物品を置いた机から、「生命・学生実習 Camera **[番号]」とラベル記載のカメラ1台、および、 専用の棚からノートパソコン1台(番号記載あり)を移動し使用ます^[注 2]。どの番号のものを用いた か、各自の実験ノートに記録を残します(レポートにも<u>必ず記載</u>します)。
- 顕微鏡の接眼レンズ、左右いずれかを抜き取り、代わりに CCDカメラを挿入します。接眼レンズは埃のかからないよう に注意して、プラスチック容器(共通物品机上から各自1つ ずつ取ります)に保管します。
- ノートパソコンに電源コードを接続します。CCD カメラとノ ートパソコンの間は、USB 専用ケーブルで接続します。ケー ブル類も、共通物品を置いた机上にあります。
- 5. ノートパソコンを起動します。ユーザー名は「general user」 ですが、パスワードなしで起動させます。
- デスクトップ(最初の画面上)に、「USB_Camera」と「Image J」のアイコンがあることを確認します。Image J は、後の画 像処理で使う専用ソフトです。
- ビデオカメラのマークの「USB_Camera」をクリックします。
 Select Device Type で「NOVEL 300」の表示が出たら「OK」
 をクリックします。
- No Device!」と表示されたら CCD カメラが正しく接続され ていないことを意味します。うまく起動しない場合には、担 当者に相談します。
- 9. CCD カメラ用ソフトの操作方法の概要(右上図のメニューの 上側から順番に)を以下に記します。

IOOIS	
Video Capture	
Size- 640	x 480 💌
Color Adjust	
R Gain	
G Gain	
B Gain	
Exposw —	
Gamma	- <u>1</u>
R Offset	
G Offset	
B Offset	
AWB	AE
General Fun	Special Fun
PreSettings	
Save Setting C .	а св сс св
IT.	I I Trag Contr
Jpeg 75	 I Thes capit
Jpeg 75 Record 15 -	- F Speg Capit F Popup
Jpeg 15 Record 15 Record	Popup Snap
Jpeg 175 Record 15 Record Detect Noise	- Spag Capit - Popup - Snap - Curve
Jpeg 75 Record 15 Record	Curve
Jpeg 75 Record 15 Record Detect Noise Thresl 0 Black Balance	Foreview and Save Only
Jpeg 75 Record 15 Record Detect Noise Thresl 0 Black Balance Bright Balance	Foregram and Save Only

X

NOVEL 300

- a. 「Tools」: クリックして、「Set capture image path」
 から、画像を保存するフォルダの場所を指定します。通常は、CまたはDハードディスクド ライブの「Images」を設定します(他の設定でも可)。BMP/JPEG[#](静止画) AVI[#](動画)
 の保存する場所を、個別に必ず指定する必要があります(同じフォルダでも可)。自分の名前 をつけたフォルダをCまたはDドライブ内などに作成し、そこを保存場所としても構いません。他の学生が保存したものに重ね書きしたり、消去したりしないように注意します。
- b. 「カメラの絵マーク」: クリックすると画像が表示されます。リアルタイムの画像です。
- c. 「Size」:記録・表示される画面の大きさをピクセル数[#](区画の個数)で表示。大きな「Size」

では、拡大され詳細が表示されるのではなく、単に、表示範囲が広がるだけです。640x480 程度が、通常の速度で記録・表示でき、もっとも使いやすい Size です。特に、動画を撮影す るときは、このサイズが適しています(大きすぎると、コンピュータの負担が大きくなり、 動作速度が低下します)。

- d. 「Color Adjust」: 色の表示強度を個別に調節。通常は使う必要はありません。
- e. 「AWB」: 自動のホワイトバランス機能[#]。上の「Color Adjust」を自動的に行います。
- f. 「AE」: 自動明るさ(カメラ絞り)調節。カメラの増幅率を自動的に変化させます。一般に 「オートゲインコントロール(自動増幅率調節、AGC)」と呼ばれる機能です。
- g. 「General Fun」:撮影位置の設定。ほぼ、中心に設定して使いますが、通常は調整不要です。
- h. 「Save Setting」: カメラの撮影条件の設定を4種類(A~D)保存できます。
- i. 「Record」:表示されている画像が、動画で保存されます(上の 9.a「Tools」参照)で指定 された保存場所へ)。1回クリックすると記録を開始します。もう一度クリックすると、記録 を停止します。2回目をクリックしないと、無限に巨大なファイルを保存し続けるので、要注 意です。コンピュータのメモリー容量の制限の都合上、数秒程度の短い動画記録(数 M バイ ト程度)とするのが安全で、他のソフト(以下の Image J など)での取り扱いも容易です。
- j. 「Snap」: 表示されている画像が、静止画(JPEG 形式[#])で保存されます(A-9 ページ、Tools で指定されたフォルダの中に保存される)。
- k. 「Detect Noise」: 「Thres」で指定した数値(閾値)以下の点をノイズと見なして、黒く消 去する機能。通常は使う必要はありません。
- 「Curve」: クリックで指定した位置の横方向への明るさの分布を表示します。画像のデータ は明暗の数字として置き換えることができますが、その数値がグラフで表示されます。グラ フのギザギザの上下幅(細部が撮影できていることを示しています)を目安にして、観察し たいものが、大きな振幅(高いコントラスト)で撮影できているかを調べることもできます。 この機能は、通常は使う必要はありません。
- 10. この CCD カメラソフトは、以降の観察でも使用します。十分慣れるようにします。
- 11.「Snap」や「Record」で記録したときには、必ず指定したフォルダの場所に、ファイルが作成されているか確認します。同時に、各自の実験ノートには、作成したファイル名、観察の日と時刻、試料の種別、対物レンズの種類や照明などの観察条件を、可能な限り詳細に記録を残します。後日、読んでわかるように説明文も記します。このような実験ノートは、他の人が実験ノートを見ても、同じ作業を再現できるように正確な記録を残すように心がけます。保存した画像データファイルは、以下のImage Jを使って見ることができます。

^[注 2] 用いるコンピュータの OS は Windows 7 でウィルス対策は施されていますので、各自の ID で、 CHUO-U へ接続して使用して構いません。また、他の HD や USB などを接続して使用する場合、ウィル スの感染のないことを確認したもの(実習用に提供したもの)以外は可能な限り使用しないように気をつ けます。

() 画像表示用ソフトの基本操作

- 1. デスクトップ上の「Image J」をクリックして画像解析ソフトを起動します。しばらくすると、上のようなメニューがデスクトップ上に表示されて準備完了です。
- 詳しい操作方法は、「課題 画像処理方法の演習」で習得します。ここでは、撮影した画像を表示させ、 簡便な輝度データ[#]表示させる練習を行います。
- 3. 上に矢印で示した「File」 「Open」のコマンドで記録した画像(静止画像)を表示させることがで きます。保存したフォルダを開き、CCDカメラを用いて撮影した画像を表示させます。以降、説明文 の中で「・・・」で示した箇所は、このようなメニューからコマンドをクリックして選択する操作を意味 しています。Image J には、処理した画像を保存する機能も付いています。「File」 「Save」とする と、画像情報がすべて正確に Tiff 形式[#]で保存されます。Word に貼り付けたりする場合、まず、「Image」

「Adjust」「Size...」あるいは「Canvas size...」で 500×500 程度の適度なピクセル数[#]に小さ くします。小さくするには別の方法もあります。上のメニューの中の矩形(イ)を選択し、必要な箇 所だけを指定して、「Edit」「Copy」(または、Ctrl-C)の後で、「File」「New」「Internal Clipboard」 で、コピーした箇所だけの画像が新しく作られます(注:「Internal Clipboard」は、Image J ソフト内 部だけのコピー・ペースト専用メモリー、「System Clipboard」は、他のソフトで作成した画像を取り 込む機能で使います)。word のファイルに画像を貼り付ける場合、「File」「Save As」「Jpeg ...」 のコマンド jpeg 形式[#]で一旦自分のフォルダに保存し、word 上で読み取って使います(「Edit」「Copy to System」を実施してからも word ファイル上へ直接コピー/ペーストも可)。

 記録した動画を表示させるには、「File」 「Import」 「AVI...」で開きます。Image J は、一般的な 形式の画像ファイル(*.bmp[#]、*.tiff[#]、 *.jpeg[#]、*.gif[#]など)には自動的に判別して対応しますが、 それ以外の特殊なもの^[注3]は、この「Import」のメニューから画像の種類を選んで読み込みます。AVI [#](動画のファイル)も「Import」のメニューで読み込みます。

^[注3] 画像のファイル形式はさまざまなものがあります。Tiff[#]や BMP[#]は元の画像情報をほとん どそのまま記録するファイルですが、ファイルサイズが大きくなります。Jpeg[#]や Gif[#]は、画 像を圧縮して保存します。ファイルサイズは小さくなりますが、細かな画像情報が失われます。 AVI は、一般的な 8 ビット[#]動画ファイルです。

5. ここでは、撮影記録した画像を使って、簡単な画像データの解析を試みます。

- a. 上のようなケイソウの撮影像を例に取って説明します。実際は、各自で撮影した画像ファイルを 使って練習します。表示された Window の枠上のバーや縁が濃色で表示されているものが active」 となっている画像で、操作中の画像を意味します。Image J は多数の画像を同時に表示できます が、この active な画像だけが、メニューで指定された画像処理の対象になります(間違いが起こ りやすいので要注意)。
- b. 前ページのメニューの中から、直線を引く機能「Straight line selections」(ア)を選び、画像の上 に、例(あ)で示すような線 - 0 X Plot of Diatom002 を引きます (実際は黄色線で 表示されます)。その後、 200 ^r Analyze J ^r Plot Profile J Value とメニューを選ぶと、右のよ 001 ga うなグラフが表示されます。 これは直線(あ)に沿って像

の明るさのデータ(輝度デー タ[#]といいます)をグラフにし たものです。CCD カメラ専用 のソフト上 (P9 参照) での

「Curve」と同じ機能になります。「Gray Value (濃淡値)」は、輝度データ[#]を 256 段階 (2^8 、8) ビットのデータで、0~255の数値になります)の整数値で表現してあります。

この機能とは別に、画像の上にマウスを置くと、その箇所の輝度データ#を直接表示させること もできます。Image Jのメニューの下に、座標の値と共に表示されるのがわかります(下図矢印)。

🛓 ImageJ	
File Edit Image Process Analyze Plugins Window Help)
C.C. C. L. +, K. A. Q. E. Dev. Stk. Ø	8 A >
x=243, y=139, z=0, value=62	

前ページのグラフの横軸「Distance (pixels)」は、直線上の距離を意味します。画像は小さな点 (最小単位、ピクセル、pixelとよぶ)が集まったものですが、その画素の数で距離を表現してあ ります。このようなグラフを使うことで、どのような像が、どのような輝度データ[#]の変化として 観察されているのか、グラフで表示することができます。「List」は輝度データ[#]を数値表示させる 機能、「Save...」はデータをテキストファイルとして保存する機能です。「Copy to System」 を クリックすると、他のソフト(エクセルなど)の上で、貼り付け作業を行うこともできます。「Live」 は、動画で使用する機能です(後述)。この機能には、他に以下のような機能も付加できます。

- 計測する領域幅(線幅)を変えて平均値を表示させるとき:「Edit」 「Options」 「Line Width…」
- ・ 直線ではなく他の線を選ぶ機能:「Straight line selections (ア)で右クリックして選択します。
- c. メニューの中から、四角で囲む機能「Rectangular selections(矩形領域選択)」(イ)を選び、観察像の上に(い)のような四角形を描きます。その後、「Image」「Type」「8-bit」としたあとで、「Analyze」「Surface

Plot」 とメニューを選ぶと、右のような 3D 図が表示 されます。最初の操作は、画像タイプを 8 ビット画像[#] に変換する作業です。ここで撮影した CCD カメラ画像 は、カラー画像(8-bit Color や RGB-color)のために、 必ず必要になるビット数の変換作業です。この操作で、 選んだ範囲の明るさのデータ(輝度データ[#])が 3D グ ラフとして表示できます。ここでも明るさのデータは 8

ビットの 256 段階で表示されています。このような 8 ビット画像[#]を「256 階調#」の画像と言い ます。もし、画像が、10、12、16、32 ビット画像ならば、1,024 (= 2¹⁰)、4,096 (= 2¹²)、65,536 (=2¹⁶)、4,294,957,295 (= 2³²)階調#となります。カラー画像の場合、一般に、24 ビット(8 ビット カラー)画像で、R(赤)、G(緑) B(青)色の情報が、それぞれ 8 ビットの 256 階調#で表現 されています。一般のデジタル放送のテレビ画面、デジタルカメラやスマートフォンの画面もこ のような 8 ビットカラー画像です。

d. 同じように、四角で囲んだ後に、「Analyze」 「Histogram」 とメニューを選択すると、右のよ

うなグラフ表示になります。全画素数(Count)、 輝度平均値(Mean)輝度標準偏差(StdDev.)256 階調の最小値(Min)最大値(Max)どの輝度の データが一番多いか(Mode)、分布はどのように なっているのかを示すヒストグラム(分布を示す 棒グラフ)が示されます。(Value=、count=)はカ ーソルで選択した輝度値のデータ数(頻度値)を示 す。ここの例では、輝度が、右側に偏った分布で あること、情報量が200階調付近だけに集中して いることがわかります。理想的には、256 階調を 均等に使って表示されている画像が、一番、情報 量が多いことになり、これも、画質の良し悪しを 決める重要な要素になります。

<Q1-2> 課 題

Q1-2

撮影した顕微鏡像の1ピクセル(画像の最小ユニット)が何ミクロンに相当するかは、対物マイクロメ ーターなどの標準となるモノサシ(スケール)を使って調べます。誤差や再現性、像のゆがみ(もし、あ れば)、観察する視野の中での位置、可能な限り正確にその値を知るのには、どのようにするのがよいでし ょうか。どのように工夫したか、手順を詳しくレポートに記しなさい。また、実際にその手順にしたがっ て実施し、得られた数値(1ピクセル幅が何 µm か)を計算しなさい。対物レンズの倍率が変わっても、 その値は一定であるべきですか?あるいは、倍率に応じて変わるべきものですか?これを、異なる倍率の 対物レンズを使って実際に確かめます。このような測定で、再現性の良いデータとなっているかを確かめ るために、一回ではなく、複数回の測定を実施して、平均値と標準偏差を計算する必要があります(添付 資料:「実習に役立つ統計学入門」参照)。

Q1-3

(i)-14 で、条件を変えて観察した明視野観察像の中で、詳細な構造が観察できたと判断できた条件を一 例選びます。どのケイソウでも、どの倍率でも結構です。その条件で観察した顕微鏡像を CCD カメラで 撮影します。このとき、下の6つの条件で、それぞれ画像を記録します。

- a. 細かな構造がよく観察できて、最良と思われる観察条件で1枚。
- b. aの条件から、光源の明るさを暗くしたもの1枚。
- c. a の条件から、光源の明るさを明るくしたもの1枚。
- d. a の条件から、焦点をわずかにずらして、ボケさせたもの1枚。
- e. a の条件から、コンデンサ絞りを、さらに開いた状態にしたときの像。明るさは、撮影し易いように、暗くします。
- f. a の条件から、コンデンサ絞りを、さらに閉じた状態にしたときの像。明るさは、撮影し易いように、明るくします。

撮影した画像を、(iii)-5の例で行った輝度データ解析方法で調べ、a~fの撮影条件で、どのような点 が変化するかを調べます。調べた結果を、レポートに、文章で簡潔に記述します。 用いた顕微鏡・CCD カメラ・コンピュータの番号を実験ノートに記録します。 光学顕微鏡は、電源を OFF にします。

電源コードを顕微鏡の後に巻き取ります。

上の(i)-2 の作業で使ったネジをゆるめ、接眼レンズ部分を使用前の向きに戻します。 鏡筒が回転しないように(あまり強くなく)締めます。

CCD カメラを外し、下側キャップを付け、ケーブルとともに、もとの共通物品机に戻します。

CCD カメラの代わりに外した接眼レンズを戻します。

光学顕微鏡に破損や、汚れのある場合には、教員や TA の学生に伝えます。

光学顕微鏡にカバーをかけて、指定された元の棚に戻します(課題 で再度使います)。 コンピュータの電源を OFF (電源を切る)にします。

コンピュータは、そのまま継続して使用するので、各自の机上に置いていてよい(課題 が終了するまで)。

ケイソウのプレパラートは、共通物品机のケースに戻します。

掃除当番(別の当番表参照)は、この実習で使った全机・周辺床の清掃をします。

課題 画像処理方法の演習

この実習課題では、この課題専用のUSBメモリー内にある「¥LM¥Image¥index.html」を起動させてから作業します。イ ンターネットに接続されたコンピュータの場合、以下のwebサイトへ接続することでも同じ作業を実施できます。課題の中 では、ダウンロードする画像が指定されています。それらの画像ファイル(名称を確認)を、各自のコンピュータにダウン ロードしながら、作業を進めます。

http://www.bio.chuo-u.ac.jp/nano/LM/ImageJ_ex3.pdf

この作業は、必ずしも実習室で行う必要はありませんが、コンピュータに画像解析ソフト Image J がインストールされていることが必要になります。それには、以下の2つの方法があり ます。ただし、実習室以外で実施する場合でも、出欠を取るために、実習開始の時点で指定され た教室に集合します。

・手持ちのコンピュータに Image J をインストールし、用いる。

または、

・手持ちの USB メモリーに Image J をインストールし、USB 上から起動する。

Image J は、フリーソフトです。http://imagej.nih.gov/ij/から OS を選んでダウンロードで きます。インターネットにつながったコンピュータを使って以下の作業を実施します。

上記アドレスより、Image J をダウンロードし、指示(英語表記)に従ってインストールします。
 インストール先は、各自の管理するマイドキュメントフォルダ、あるいは、パブリックフォルダ
 内の任意の場所です。大学の IT センターのコンピュータにはインストールできませんので、USB
 メモリー上で使用するようにします(用いる PC が 32bit か、64bit かでインストールするソフト
 が異なるので要注意)。

インストール時に作成された Image の印のアイコンをクリックして、プログラムを開始します。

• 下のようなツールバー(通常は画面右上)が表示されたら、実行可能な状態です。

File Edit	Image	Process	Analyze	Plugins	Windov	v Help)			
	30/	4	× A Q	87 0	Dev	Stk Ø	8	\$	>>	

ダウンロードサイトのページ

アップル社コンピュータ対応の画像処理ソフトとして開発された NIH Image は、その後、Windows 版 に対応した Scion Image や Image J として改良されて来ています。フリーのソフト(米国、NIH[#]提供) で、多くの研究者が多様な使い方をしており、画像計測や画像処理のための豊富な付加機能も提供されて いるのが特徴です。32-bit の画像データまで取り扱うことができます。ここでは、この Image J を使って、 画像処理法の概要を演習します。 < Q2-1 ~ > は、質問や考察する事項ですが、レポートには、その番号と 解答を順に記載します。

この演習では以下の画像データを使用します。(ア)~(ウ)の写真上でクリックして大きな画面を表示させた後に,右クリック(配布した USB メモリー内のフォルダから表示)して、適宜、各自のコンピュ ータの任意のフォルダにダウンロードして用います。

(ア) Pleurosigma part (ファイル名: <u>Pleurosigma part.jpg</u>)

(イ) SinePattern (ファイル名: <u>SinePattern.bmp</u>)

(ウ) Pleuropsigma (ファイル名: <u>Pleurosigma b.bmp</u>)

() 基礎操作法の練習

- 画像の読み込みと書き出し:上の(ア)の画像(ファイル名: Pleurosigma part.jpg、ケイ藻細胞の光 学顕微鏡写真、奥修博士提供)を開きます。「File」 「Save as」 「Text image...」でファイル名 を指定すると、ここで表示されている画像の輝度データ#を、エクセルなどで読めるテキストデータと して出力できます。Jpeg ファイル(JPEG 形式[#])の画像は、8 ビット[#](256 階調[#])で記録されてい るので、ここで出力したデータも、0~255 の間の整数値(輝度データ[#])として出力されます。この 機能を使って、画像 数値データの変換が自在にできることになります。逆の数値データ 画像の変 換は「File」 「Import」 「Text image...」です(注:カラーの画像の場合、この作業で記録できるも のは、輝度を示す数値だけですので、逆の作業を行うと白黒の画像となる)。
- 次に、ここで書き出したテキストデータのファイルを Excel で読み込んでみます。その中で、例えば 16 番目の列(P列)のデータをグラフ表示させると、画像の輝度データ#がどのように変化している かがわかります。さらに、その輝度変化の変動周期(一周期)は、ピクセル数(画像の最小単位)で、 およそ、どの程度になるか、わかります。このような方法で繰り返しの縞模様の周期(グラフの頂点 と頂点の間の距離)を簡便に調べることができます。
- 3. 上のような数値を正確に出すには、前回の実習「課題 (iii)-5」で修得した、「Straight line selection」 を使って、観察したい方向を決め輝度データ#を読み込む方法、あるいは、単純にマウスで、位置を指 定して、その座標を読み取って計算する方法などがあります。
- 4. 画像の明るさ・コントラストの調整:画像が暗いときや鮮明に見えないときは、「Image」 「Adjust」 「Brightness/Contrast」で調節することができます(「Auto」のクリックなどで変わることを確認)。 Brightness とは、全体の明るさです。Contrast(コントラスト[#])は、もっとも明るい点と暗い点との 間の明るさの差に相当します。注意しなければならないのは、ここの操作で変化するのは、単に PC 上での表示形式だけという点です。もとの画像データ(256 階調#のデータ)にない情報は、どんなに 輝度やコントラストを変化させても、あたらしく見えてくることはありません。最初に像を撮影した ときの条件で、どのような顕微鏡写真を撮影したかで、すべてが決まります。8-bitの輝度データ[#]の ために、コントラストが高すぎると、ざらざらした感触の画像となり、詳細が見えにくくなります。
- 5. **画像の回転、反転、擬似カラー表示などの加工**:回転は「Image」「Rotate」、反転は「Edit」「Invert」、 擬似カラー表示は「Image」 「Lookup Tables」で選択し変えることができます。これも、表示方法 の変更だけの意味しかありません。表現したい箇所を強調するときに使用します。回転作業は、肉眼 ではよくはわかりませんが、ピクセルの間の補間処理[#](ピクセルの間のデータを計算で予測する作業) を行いますので、実際は情報量として減少する方向にあります。
- 画像のエッジを抽出する方法 : 上の(ウ)の画像(ファイル名: <u>Pleurosigma b.bmp</u>) を開き、
 「Process」 「Enhance Contrast」の操作を行います。これによって、自動的にコントラストを増強 させ、見やすくする加工を行います。
- **画像のエッジを抽出する方法**:上と同じファイルを新しく開き、「Image」「Duplicate」で同じ 画像を別の名称で複製します。この操作で、「Pleurosigma_s-1.bmp」という別の名前の画像が自動的 に作られます。2つある画像の中で、片方を、「Process」「Filters」「Gaussian Blur (radius 5-10)

程度)」で処理します。Radius は処理の程度を示すパラメータですが、ここでは詳細の説明は省きます。 この操作で、人工的にボケさせた画像を作ることができます。この処理の次の操作に移ります。

- 8. 「Process」 「Image Calculator」で「Operation」を「Subtract」に選択した後に、上のボケ処理を 行う前と後の2つの画像の間で減算処理(輝度データ[#]の差を計算)を行うことができます(注:それ <u>ぞれのファイル名を間違えない様にして演算する</u>)。もちろん、同じ画像から同じ画像を減算処理する と真っ暗な画像になります。また、処理のあとで、うまく表示できていなかったり、暗い像だったり したら、上の(4)と同じ作業で、適切な明るさやコントラストを選択し、見やすくします。この減算処 理によって、もともとの画像にある明るすぎる部分をキャンセルして暗くすることが可能になります。 その結果、他の微妙なコントラストの部分を強く強調して、明瞭に表示させる効果が出てきます。微 細な構造を表示するときには特に効果的です。これもコントラストをあげて、見やすくするだけの加 工です。もとの画像の輝度データ#にないものが、新しく見えてくる訳ではありません。
- 9. このような画像処理で守らなければならない重要なルールがあります。顕微鏡の画像は、様々な処理 操作をおこなう場合には、最初のオリジナルの画像全領域とコントロール[#]となる実験データの両方に、 まったく同じ処理を実施する必要があります。観察者にとって都合の良いような、画像の一部の処理、 強調したい箇所だけを見やすくしたり、逆に、見せたくない箇所を削除したりするような操作は、こ のソフトを用いれば容易に実施することができます。しかし、このような加工作業は真実をゆがめて 伝えることに相当し、行ってはいけない捏造行為となります。もし,様々な画像処理を実施した場合、 どのような処理を行ったか実験レポートには正確に記述します。

() 画像フーリエ変換

これまでの操作で、Image J の中の簡単な操作方法を学習しました。実際の機能はさらに多種・多様で、 学習や研究の上で、より使いやすい機能を関連 web サイトから見つけることもできます。この節では、2 次元のフーリエ変換の演習を行います。まず、上の(イ)からリンクされている画像(ファイル名: <u>SinePattern.bmp</u>)を開き、以下の操作を行います(開く方法は、A-17 ページ参照)。これまでに開いて いる他の画像がある場合、それらはすべて閉じ、以下の作業に移ります。

- 1. 2次元フーリエ変換の操作:「Process」 「FFT」 「FFT」 と順番に実施します。ここで開いた 画像は、一定の周期で明暗が変化する単純な縞模様です。上の操作によって、別の新しい画像(FFT of SinePattern.bmp と名前が付いている画像)が作られるのがわかります。これは、SinePattern.bmpの 中の周期的な模様を解析して、2次元のマップとして表現したものです。周期は縞模様の間隔ですが、 その逆数は単位長さあたりの縞の数に相当し、これを空間周波数[#]といいます。音の周波数とその逆数 の波長の関係と同じです。こうやって作った空間周波数のマップをFFT 画像(フーリエ変換後の画像、 FFT は Fast Fourier Transform の略です)と呼びます。このような操作を2次元画像のFFT 変換、あ るいは、FFT 処理と呼びます。FFT 変換とは何でしょうか?実際の作業の意味を理解する目的で、次 の操作を行います。
- FFT 画像が「active」になっているのを確認して次の作業を実施します。Image Jのメニューの中で丸印のツールアイコン(Elliptical or brush selections)をまず選びます。次にFFT 画像の中にある中で、明るいスポット部分(中心以外にあるものの中からまず一つ選ぶ)をカーソルで小さく囲み(マウス)

のドラッグ作業)、「Edit」 「Cut」(又は, Ctrl+X)の操作で、この部分を削除します。この操作 で,FFT 画像の中にある一部の輝度データ[#]が、完全に消去されたことになります。消去する場合、画 面の中心を挟んでちょうど反対側にある対称な位置にあるスポットも、必ず同じように消去処理する ようにします。この操作で、FFT 画像の中にある一部の情報が欠落したものを人工的に作ることがで きます。その欠落した情報とは、何でしょうか?次に示す FFT 処理と逆の処理(逆変換)を行うとわ かります。

- 3. FFT 処理した画像が選択されて active になっている(処理対象の対象画像として選択されている)ことを確認し、Ctrl+A(全画面が選択される)を押した後に、「Process」「FFT」「Inverse FFT」を実施します。新しい画像が現れますが、「Image」「Adjust」「Brightness/Contrast」で適度にコントラストと明るさを再調整して画像を表示させます。この操作は、上の操作(1)のまったく逆の計算を行うものです。計算の結果、別の画像(フーリエ逆変換像、Inverse FFT of SinePattern.bmpと名前が付いている画像)が表示されます。ここで新しく作られる画像は、もとの画像から、上の(2)の操作で情報を削除した残りに相当します。どの部分が欠落しているでしょうか < Q2-1 > ?同じように、FFT 画像の中の他のスポットも追加して削除するとどうなるでしょうか?得られた観察結果から、「FFT 画像上のスポットを削除する作業」とは何を意味するか推測し、レポートに記述します。これは、以下の「空間周波数[#]」を正しく理解することにつながります。
- 4. FFT 画像の中の1つのスポットは、元の画像の上に周期的な模様(繰り返し構造)があることを示しています。つまり、もとの画像の上では、その中心から、そのスポットの方向に向かって、中心からの距離の逆数を周期とする繰り返し模様が存在することを意味しています。数学的には複雑な式で表現されますが、プリズムに白色光を通すとスペクトル(光の波長、周波数の逆数)に分けられるのと同じ様に、FFT 変換は、画像の中の縞模様(周波数の逆数)の分布を調べる正確で便利な計算方法です。1次元ではなく、2次元なので、少し複雑にはなります。FFT 画像の中心からの距離が周期の逆数なので、これを「空間周波数[#]」と呼びます。中心により近いスポットは、より長い周期(低い空間周波数、大まかな構造や荒い模様)のパターンを、中心からより離れた点は、より短い周期(高い空間周波数、小さい構造や微細な模様)のパターンを反映しています。

5. 上の(ウ)の画像(ファイル名: <u>Pleurosigma b.bmp</u>)を新しく開きます。同じように FFT 処理します。現れた代表的なスポット像(FFT 画像)を使って、上の操作(2) (3)の 操作を行います。元の画像にはどのような変化が生じますか。違いがわかりにくい場合、上の基礎操作練習(i)-7~8の操作で、処理前後の差を調べると明瞭にわかります(画像のわずかな差を見るときは、画像のコントラストや明るさを適宜調節して見やすくします)。その結果をもとに、このケイソウの細胞壁にはどの方向へ

どのような周期の繰り返し模様があると言えるか考察します < Q2-2>。考察した結果をレポートに記述します。

- 6. 上の基礎演習(i)-7 では、2つの画像(ボケさせた画像とエッジを抽出した画像)を使いました。それ ぞれに、同様のFFT処理を行います。FFT処理した画像の上では、2つには、どのような違いがある でしょうか? <レポート記載不要>
- 次の2つの画像、(エ)と(オ)は、ケイソウ Pleurosigma を、異なる照明条件下で観察した結果を示しています。この場合、もとの細胞の構造は、ほぼ同じのはずですが、観察方法の違いによって、見える像が変わって来ます。観察像の上でどのような違いがあるでしょうか<Q2-3>?それぞれ FFT 画像変換の手法を作って比較し、そこから推察できることをレポートに記述します。
 - (エ)暗視野照明条件下で観察したケイソウ (<u>http://www.bio.chuo-u.ac.jp/nano/LM/Image/Plurosigma_DM00.jpg</u>)

(オ)光学顕微鏡写真 (<u>http://www.bio.chuo-u.ac.jp/nano/LM/Image/Plurosigma_LM00.jpg</u>)

その他の便利な画像処理コマンド

「Analyze」 「Measure」: 面積、長さ、最大最小輝度などの表示

- 「Image」 「Adjust」 「Size」:画像の拡大・縮小
- 「Image」 「Cut, Copy, Invert ….」:画像のカット・コピー・反転・拡大・縮小など
- 「Process」 「Image Calculator」:画像データの間の四則演算
- 「Process」 「Math」:画像輝度データへの四則演算
- ^r Process J ^r Smooth, Enhance Contrast, Sharpen, Noise ... J
 - :画像の円滑化・コントラスト増強・エッジ強調など
- 「Plugins」 「Macro」:同じ様な繰り返し作業の記録、再生、作業の読み込みなど

参考サイト <u>http://www.bio.chuo-u.ac.jp/nano//LM/Image/ImageJ ex2.html</u>

() 動画の解析

Image J は、*.AVI 形式[#]で保存された動画の処理機能も豊富に備わっています。ここでは、動画から輝度データ#を読み取り、その時間的な変化を調べる例を演習します。この方法は、課題 で応用する重要な 技術です。動画は、複数の静止画像からできていて、その1つ1つをフレーム(Frame)と呼びます。

ここで用いるファイルは下の動画です。動物(プラナリア)が右から左へと移動する様子が観察されて

います。まず、ダウンロードして、各自のコンピュータに保存します。その 後、Image Jで「File」 「Import」 「AVI...」で読み込んで使います(右 図で「OK」をクリック)。全部で200フレーム(動画の画像の枚数)のファ イルです。コンピュータの性能上、この程度の枚数(フレーム数)の動画が 扱いやすい枚数です。非常に長いビデオ記録はコンピュータの負担を軽減す るために、短い一部だけにして読み込むことを推奨します(First Frame と Last Frame で指定する)。右に示すように、'Convert to Grayscale'をUとして 操作するとコンピュータへの負担は小さくなります。

🛓 AVI Reader	X
First Frame: Last Frame:	1 200
☐ Use Virt I⊄ <u>Convert</u> ☐ Flip Vert	ual Stack to Grayscale ical
ОК	Cancel

Image/Motion03.avi

(注:右クリックで、動画を保存します。画面の左右幅は 30 mm、記録速度 15 frames/秒の動画記録)

- 動画の表示:「Image」 「Stacks」 「Tools」 「Start Animation」によって動画の表示が始まり ます(または、▶のクリック)。動画は、2次元の静止画像(xy 面の2次元データ)が、z方向(時 間軸の方向)へ順番に積み重なるようにして並んでいるものと見なせます。積み重なったものなので、 ここでは「Stacks」とよびます。動画は、x/y/tの3軸の3次元的な情報という考え方です。画像の下 の を左右にスライド操作してもアニメーションの表示ができます。アニメーションの表示は画像の 上でクリックすると停止します。
- 時間軸方向への投影:動画を active にしたあとで「Image」 「Stacks」 「Z Project」によって、 全時間の輝度データ#をすべて重ねて表示します。これは xy 面の像を z 軸(時間軸)方向へすべて投 影して重ねたものに相当します。この操作を少し応用すると画像の加算平均(動画でなく静止画とし てビデオ撮影してから)し画質を改善する操作へと応用も可能です(下記手順)。

(Frame 加算平均による静止画の画質改善方法)

a. 観察したい動きのないものを選び、動画(Avi形式)として記録・保存します。その後、ImageJ で 8bit-Stacks 画像として読み込みます。これを 32bit-Stacks に変換します(「Image」 「Type」「32-bit」)。撮影した画像の内容や表示はまったく変化しませんが、256 階調#の輝度データ#

を、32-bit = 4,294,967,295 階調[#]まで、表示可能な枠を広げるための宣言です。ここで 32-bit に 変換できるものは、白黒の画像のみです。処理中に警告が出てきたら、はじめの AVI 動画を読み 込むときにIP Convert to Grayscale (白黒画像)の設定で読み込むようにします。

- b.「Image」「Stacks」「Z Project」で、画像を重ねますが、このとき、Projection Typeで、 Sum Slicesを選択します(Sum Slicesを選ぶと、場合によっては自動的に 32-bit 画像になります)。 この作業で、全画像が加算されて新しい画像が作られます。時間軸方向への合計算を行ったこと になります(加算平均すると画像の標準誤差が減少します。添付資料:「実習に役立つ統計学入門」を参照)。この操作で、非常にキメの細かな画像(情報量の多い画像)となります。課題 の()画像表示用ソフトの基本操作-4の操作、「Analyze」「Histogram」を使えば、処理した 画像の中で,輝度データ#がどのように分布しているかがわかります(8bit は 0~2⁸の間, 32-bit は 0~2³²の間)。
- データの時間変化を見る :メニュー上の Rectangular selections (□マーク)、あるいは Point selections(マーク)を使って、まず、解析したい領域や点を選択します。その後、「Image」「Stacks」「Plot Z-axis Profile」と順番に実施すると、指定した場所の輝度データ[#]の経時変化がグラフで表示されます(操作を繰り返す場合、前のグラフ表示を消去)。次に、メニュー上の Straight line selections (マーク)を使って、まず、解析した位置に1本の線を選択します。その後、「Image」 「Stacks」「Reslice」と順番に実施すると、指定した直線に沿った輝度データ[#]がどのように時間変化するか

Newside」と順雷に実施すると、指定した重線に沿りた陣度ケーターかどのよりに時間変化するか の画像が表示されます。これは、動画を x/y/t の 3 次元画像(z方向が時間に相当)と考えた場合に、 その x/y のいずれかの軸を時間軸に置き換えて眺めたものと同じになります。「Reslice」とは ImageJ 独特の造語ですが、3D の立体的なものを、x/t や y/t などの他の面で切り取る操作に相当します。な かなか難しそうな概念ですが、四角い模型など手にとって考えると簡単です(A-25 参照)。直線を描 いた後で、「Analyze」 「Plot Profile」でグラフ表示させ、動画表示を開始させると、刻々とグラフ 表示が変化することがわかります。この数値データに相当するものを、輝度データ#として表現したも のが、上の「Reslice」で作成した画像になります。

4. 上の方法によって、プラナリアの運動の速度が解析できます。まず、Straight line selections (
 ク)を使って、動物の運動する方向に沿って線を描きます。その後で「Reslice」操作すると、下のような画像が表示されます。

 このような表示を一般にカイモグラフ表示(キモグラフ表示)[#]とよびます。このようなカイモグラフ 表示画像から動物の運動速度を求めるには、どのようにしたら良いでしょうか?もとの画像の横幅(30 mm)と記録速度(毎秒15コマ、15 fps)の値を使ってプラナリアの移動速度を計算しなさい。< Q2-4 >この手法は,タマネギの細胞の中の顆粒輸送運動の解析に、そのまま直接応用できます(後述)。 その他の便利な動画処理コマンド

「Image」→「Stacks」→「Plot Z-axis Profile」:輝度の時間経過をグラフ表示(領域を限定することも可能)

- 「Image」→「Stacks」→「Make Montage」: 全画面を並べて表示
- 「Image」→「Tools」→「Reduce」/「Combine」/「Concatenate」/「Reverse」: 動画の画面数を減らす / 2 つを上下左右で合体させる / 2 つの動画を連続してつなぐ / 逆方向に並べかえる
- 「Process」→「Subtract Background」:背景画像を計算して、全画像から引き算する(背景のノイズを減ら す)
- Line 選択後「Analyze」→「Plot Profile」→ Live キーを on:動画の輝度の時間変化を動画で表示
- Rectangular で領域選択後「Analyze」→「Surface Plot」: 選んだ領域の輝度分布マップの時間変化を動画で 表示

「Plugins」→「3D」→「3D Viewer」: 3D 画像と見なして、縦横自由に回転させて見る機能

X-Y-t の 3 次元像と「Reslice」操作の意味

ビデオ画像などの動画は、XY 面の二次元の平面像が、時間とともに変化するデータです。このとき第三の座標軸としての 時間軸(t軸)がZ軸の代わりにあるとすれば、動画(XY軸)の画像処理は、三次元の立体像(XYZ軸)の処理と同じよ うに考えることができます。それまでXY 面で見ていたもの(A)を、Xt 面(B)やYt 面(C)で観察することもできます。 あるいは、XY 面の上で新しい線を「Straight Line」で指定すると(A の中の白破線)、その線とt軸の切り取り面(t-Straight Line 面)で立体像を切り取るような観察もできます(D)。これが Reslice という作業です。「Reslice」は ImageJ ソフト の中だけで使われる造語で、訳すと「再切断操作」ということになります。動画の上で、ある線上の時間的な輝度変化を追 跡する(D)のような断面像は、キモグラフ表示(Kymographic display)とも呼ばれています。これはカイモグラフ(キモ グラフ)[#]という心電図や筋収縮を調べる古典的な記録装置の名称に由来する呼び名です。

<実験が終わったら>

- 用いたコンピュータの番号を実験ノートに記録します。
- コンピュータの電源をOFF(電源を切る)にします。
- コンピュータは、そのまま継続して使用するので、各自の机上に置いていてよい(課題 が終了するまで)。
- ケーブル類、コネクタ類は、共通物品机に戻します。
- 掃除当番(別の当番表参照)は、この実習で使った全机・周辺床の清掃をします。

課題 ケイソウの細胞の観察(位相差顕微鏡・明視野照明法)

はじめに

これまでは、光学顕微鏡の操作方法、画像処理の方法など、実験に必要な技術を学んで来ました。これ からは応用実験です。以下に、いくつかの設問や考察する課題を列挙します。レポートは,以下の課題、 および、課題を実施します。実施した範囲、時間内に終了した範囲でレポートにして、メールで送信し ます(/ 切は実験 A の実施最終日の 18:00)。

レポートは、設問 < Q1-1~Q3-1,Q4-1 など > の内容(設問内容を示す短い説明文を併記)と共に、下 のレポート書式にならってA4サイズに印刷できる形式で、wordのdocファイルとしてまとめます。レポ ートには、最大 5 枚まで挿入画像として貼り付けて構いません(なくても結構です)。レポートのサイズ は、約5~6 M バイト以下になるようにします。画像は必要最低限の箇所だけを切り取って使用するとフ ァイルのサイズを小さくできます。必要に応じて、Image J の上で、画像の切り取り(「Image」「Adjust」 「Canvas Size」)や縮小作業(「Image」「Adjust」「Size...」)が可能です。作成した word のファ イルには、学生証番号+氏名+実験 A.docx のファイル名を付けて保存します。

その後、学内の Grace Mail 機能(<u>https://gracemail.educ.kc.chuo-u.ac.jp/</u>)を使い、上村 skam@bio.chuo-u.ac.jp宛てへ、メール添付で送信します。メール表題には、必ず、「学生証番号+氏名+ 実験A」と明記してください。また、自分の PC アドレスへも同時に送信してこれをバックアップファイ ルとして保存します(通信障害でレポートを受信できなかった場合、再提出の必要があるので要注意)。 Doc 以外のデータや画像ファイルなども、同じように保存することを薦めます。レポート提出後、2日以 内に必ず「メール受領した旨」の返信を送ります。この受領案内が届いていない場合は、未提出扱いとな っているので、必ず、再送信するか、上記アドレスへ、早急に問合わせるようにします(重要)。

最重要 レポートの提出やその確認、成績に関する問い合せなどで電子メールを使用する場合には、必ず、 氏名と学生証番号を明記するように。送信者が特定できない電子メールには対応できません。また、問い 合せのあったメールアドレスにそのまま reply 送信(返信)することになりますので、PC からの電子メ ールが必ず受信できる設定となっているマシンで受信する必要があります。一般的な携帯メールからの問 い合せでは、特にこの点は要注意です。

		レポー	ト書式				
•	氏名						
•	学生証番号						
•	実験 (実施日: 年 月	日	曜日、時間 :	~	:)	
	使用した顕微鏡番号	()				
	使用したノートパソコン番号	()				
	データ保管のフォルダ名	(D:¥	.)				
	使用した CCD カメラ番号	()				
	使用した顕微鏡番号	()				
	~01~ コンデンサ問問時の知齒	マゆの亦ひ					
				••			
•	実験(実施日: 年 月	日	曜日、時間 :	~	:)	
	使用したノートパソコン番号	()				
		••••	•••••	• •			
		••••	•••••	• •			
	• • • •						
	宝酴 またけ (宝施口・ 年	в	口 曜口 時間		~)
	使用した顕微鏡番号	(•		•)
	使用したノートパソコン番号	()				
	データ保管のフォルダ名	(D:¥)				
	使用した CCD カメラ番号	(2 1)				
	使用した顕微鏡番号	()				
		•••••	, 	••			

() ケイソウの細胞観察

Diatom Test Plate, 8 forms 種名 (左より) Amphipleura pellucida Frustulia rhomboides Pleurosigma angulatum Surireila gemma Nitzschia sigma Stauroneis phoenoceneron Navicula lyra Gyrosigma balticum

- < Q3-1> 上の 8 つのケイソウ細胞標本の、細胞の長さと幅を計測しなさい。また、長軸方向(上の写 真の上下方向、細胞が長い方向にある体軸の意味)に垂直な方向線(横縞模様)の平均間隔(課題 -(i)5 の表を参照、周期や空間周波数に相当)を求めなさい。その周期を調べたときの観察条件、計算方法、 データの数などもわかるように詳細に記しなさい。計測は、誤差を考慮して、必ず複数回実施して、そ の平均値(m)・標準偏差(s)・計測回数(n)を、m <u>+</u>s (n=**)[単位]のように明記します(エクセルで容易 に計算できます。巻末資料:「実習に役立つ統計学入門 」参照)。
- < Q3-2> コンデンサ絞りと視野絞りを全開にします。コンデンサのターレットは【0】の明視野照明で 観察します。その後、黒い紙(共通物品机上)を下のように照明光源(視野絞りの真上)に置いて、図 のように、左右に位置を微調節しながら、ケイソウを観察します。観察像にどのような変化が生じます か?これは、斜光照明法と呼ばれる古典的な方法です。遮光紙を挿入した方向の周期構造(数の黒矢印 に直交する縞模様)について、解像度が向上すると考えられています。実際に、解像度が上昇し、より 細かな周期構造が観察できるようになるかを調べなさい。コンデンサレンズをわずかに上下させること でも、照明条件が変化して、より細かな構造が観察される場合もあります。微細な周期構造が観察でき たことを示す証拠を得るためには、どのような観察や画像処理を行うのが適切でしょうか?ここでは、 課題 と で修得した方法を応用します。証拠となる観察像をレポートに添付し、その撮影条件も詳細 に記しなさい。

- < Q3-3> Pleurosigma angulatum において観察される細胞壁表面の模様を、できるだけ高画質で明瞭 な画像として記録しなさい(観察条件は、位相差顕微鏡[Ph]・暗視野顕微鏡[DF]のいずれでも良い)。 これまでの演習技術を駆使して、最善の鮮明な観察像が得られるように試みます。その画像を得たとき の条件・画像処理内容の詳細も合わせて記載しなさい。
- < Q3-4> 顕微鏡の焦点を合わせるツマミの回転方向と、試料を載せる試料台の上下にすすむ方向との関係を調べなさい。その上で、下の3つの条件、
 - 焦点のちょうど合った位置
 - 焦点の合った位置からわずかに対物レンズが試料に接近した位置
 - 焦点の合った位置からわずかに対物レンズが試料に遠ざかった位置

で、観察される像にどのような変化が生じるかと記載しなさい。これは位相差顕微鏡に見られる独特の コントラスト反転現象です。できるだけ小さな斑点(小さなゴミなど)を使って観察します。明視野照 明条件との違いは、どのようなものでしょうか。

<注:ここで使用する対物レンズと照明条件>

対物レンズの種類	PlanC N	40x/0.65 Ph2	/0.17/FN	122
コンデンサターレット	[Ph2]	(40x の位相差)、	および、	【0】(明視野照明用)

< Q3-5> 暗視野照明条件(コンデンサターレット【DF】)では、細かな構造が高いコントラストで観察 できる特徴があります。しかし、像が暗いために一般に CCD カメラで観察像を正確に記録することは 難しいことがあります。どのような解決方法があるでしょうか?どのような方法でもよいので、考えつ いたものを試して画像を記録し、観察条件も合わせて詳細を記述しなさい。 <実験が終わったら>

用いた顕微鏡・CCD カメラ・コンピュータの番号を実験ノートに記録します。 光学顕微鏡は、電源を OFF にします。

顕微鏡の不具合、汚れなどは、教員か TA に報告します。

電源コードを顕微鏡の後に巻き取ります。

接眼レンズを使用前の向きに廻します。固定ネジは、鏡筒が回転しないように(あまり強すぎないように)締めます。

CCD カメラを外し、下側キャップを付け、もとの共通物品机に戻します。

CCD カメラの代わりに外した接眼レンズを戻します。

光学顕微鏡に破損や、汚れのある場合には、教員や TA の学生に伝えます。

光学顕微鏡にカバーをかけて、指定されたもとの棚に戻します。

コンピュータの電源を OFF (電源を切る)にします。

コンピュータは、コンピュータ専用棚へ戻します。

ケーブル類、コネクタ類は、共通物品机に戻します。

ケイソウのプレパラートは、共通物品机のケースに戻します。

掃除当番(別の当番表参照)は、この実習で使った全机・周辺床の清掃をします。

課題 タマネギの細胞の観察(位相差顕微鏡・暗視野照明法)

() タマネギの鱗茎細胞観察

ここでは、タマネギの鱗茎細胞を使います。高校生の生物実習でも頻繁に使用される実験材料です。細胞 が大きく、透過して内部構造が観察できる点が特徴です。ここでは、次の2点に絞って観察を実施します。

- ・ 位相差顕微鏡による細胞内繊維構造(実際は、原形質糸)の観察。これまでの観察や画像処理の技術 を生かして、できるだけ詳細な構造観察を行うようにします。
- ・ 暗視野照明、または、位相差顕微鏡による原形質流動の観察。細胞内の原形質流動の解析を行うための動画記録をとります。その後、記録データを解析して、どのような運動速度を持つかを調べます。

各自で、まず、プレパラートを作成します。カッターナイフを用いて鱗茎の内側(凹部)に約5mm四 方の切り込みを作成します。その内部を傷つけないように、また、乾燥しないように注意して、手早くピ ンセットで剥ぎ取るようにして取り出します。その後、スライドガラスの上に、鱗茎の内側をスライドガ ラス側にして置き、すみやかに水(水道の水)を加えます。カッターで切り込みを入れる前に、試料のタ マネギ表皮上に少量の水を張っておいてもよい。空気の泡のできるだけ入らないように工夫しながら、カ バーガラスをかけて観察します。この作業に必要な材料(タマネギ1個)・道具類(カッターナイフ、ピン セット、スポイト)は、共通物品机上から、各実験机に1セット移動して共同で使用します。スライドガ ラスとカバーガラスは、各自、プレパラートを作成する時点で、共通物品机から持ち出して使用します。

細胞内の構造の観察しやすいものとそうでないもの、観察の度に、あるいは、プレパラートを作成する 度に、微妙に状態が異なる点は注意します(薄い表皮を使う方が細胞は観察しやすい)。

- < Q4-1> 光学顕微鏡では、コンデンサレンズを使い、試料の一部に強い光を集中させて当てて観察を続けます。生きた細胞を観察するとき、強い光で照明すると、試料にどのような影響があると予測されるでしょうか?影響があるとすれば、それをできるだけ小さくするにはどのような配慮が必要でしょうか?
- < Q4-2> タマネギの細胞の核のできるだけ鮮明な観察像を記録したいと思います。どのような工夫が必 要でしょうか?考えられる工夫を実践して、核の拡大像を記録しなさい。
- < Q4-3> タマネギの細胞の大きさを計測しなさい。最低限 10 個の細胞の長さと幅を計測し、その平均 値、および標準偏差を求めなさい(エクセルで容易に計算できます。添付資料:「実習に役立つ統計学入 門 」参照)。
- < Q4-4> 原形質流動を観察します。位相差顕微鏡像と暗視野照明での観察像の違いは、どのようなもの でしょうか?細胞内で流動する顆粒について、比較した結果を記述しなさい。

- < Q4-5> 原形質流動の速度を、できるだけ正確に解析します(対物レンズ x40 の位相差顕微鏡を推奨)。 そのためには、実際の画像処理を使った解析方法を工夫するのと同時に、次の2つが重要な課題となり ます。
 - ◆ 絶対距離を正確に求める
 - ◆ 時間を正確に求める

この点を解決するには、どのような工夫が必要でしょうか?考えられる工夫を実践して、運動している 顆粒の中の1つに着目して、その速度を求めます。時間的な余裕があれば、複数箇所、複数の場面でも 測定して、その速度にどのようなばらつきがあるか、できるだけ正確に求めなさい。データ数や解析し た方法も記載しなさい(ヒント:課題 -(iii)3で行った解析方法がここで応用できます)。

注:この速度の解析は、ビデオ撮影を行いますが、コマ数(1 秒間に撮影する画像の枚数)をできるだけ数多くするために、画像のサイズを 640×480 など小さなサイズで行うのが良い(課題 -(ii)9c 参照)。 ここで使用する USB カメラで記録した動画は、Media-player では再生できない。動画の観察は、Image Jを使用する。動画を保存するフォルダの場所は、A-9 ページの 9-a 項の説明参照。 <実験が終わったら>

用いた顕微鏡・CCD カメラ・コンピュータの番号を実験ノートに記録します。 使用後のスライドガラスとカバーガラスは、廃棄ガラス屑入れに入れます。 ピンセットやカッターナイフなど、他の用いた道具類は、蒸留水、70%アルコー ルで洗浄後、キムワイプで水気を拭き取り、共通物品棚に戻します。 光学顕微鏡は、電源を OFF にします。試料台・鏡筒・接眼レンズの周辺部(ゴ ム枠部分)などを、70%アルコールを付けたキムワイプで拭きます。このとき対 物レンズの先端、接眼レンズの上面は、絶対にさわらないようにします。 光学顕微鏡に破損や、汚れのある場合には、教員や TA の学生に伝えます。 電源コードを顕微鏡の後に巻き取ります。 接眼レンズを使用前の向きにします。鏡筒が回転しないように、ネジを(強すぎ ない程度に)締めます。 CCD カメラを外し、下側キャップを付け、もとの共通物品机に戻します。 CCD カメラの代わりに外した接眼レンズを戻します。 光学顕微鏡にカバーをかけて、指定されたもとの棚に戻します(番号を確認)。 レポートを提出し、コンピュータに残った不要なファイルは消去します。 コンピュータの電源を OFF (電源を切る)にします。 コンピュータは、コンピュータ専用棚へ戻します。 ケーブル類、コネクタ類は、共通物品机に戻します。

掃除当番(別の当番表参照)は、この実習で使った全机・周辺床の清掃をします。 実験 A の最終日(全3班の最後)には、デスクトップ、D:¥Images などの中で、 実験 A に関わる画像ファイル、doc ファイルをすべて消去します。
用語解説(#の印のある語句の説明)

- 8 ビット画像 (8-bit image): 明暗の強さを、2⁸ = 256 段階の数値データとして表現した画像。Windows 上の一般的な写真 や画像のデータ (jpeg、gif、bmp など)は、8bit 画像 (カラーの場合、RGB (Red/Green/Blue)の3色がそれぞれが8-bit) で扱われることが多い。
- AVI (avi)形式 (AVI format):一般的な windows 版での動画フォーマット形式。各コマが 8-bit 画像データとなっている。

BMP(bmp)形式 (BMP format):マイクソフト社/IBM が最初に提唱した画像保存形式。8-bit 画像データ。

- CCD カメラ (CCD camera):光を受けて発生した電荷を受光素子に蓄積した後、順番に読み取る形式で画像を得る方式のカメ ラ。一般的なデジカメの受光素子として使われている。
- JPEG(jpeg)形式 (JPEG format): 圧縮して画像を保存するときの一般的なフォーマット方式。画像をフーリエ変換に似た操作を行って保存するが、この方法で保存すると元の情報の一部が失われるので、完全には再現できない(非可逆的な圧縮) 点は要注意。重要な実験データを保存するときは使わない方が良い。
- NIH (NIH):米国の厚生省に相当する組織の下にある研究機関。
- Tiff 形式 (Tiff format): 8~32bit 画像を保存する一般的なフォーマット。動画保存も可能であり、元の情報が正確に再現 できる点で優れている。

USB カメラ (USA camera): コンピュータに USB ケーブル経由で画像を送信するデジタルカメラの一般名称。

- 暗視野照明 (darkfield illumination microscope): 観察する試料からの散乱・屈折される光(ミー散乱と言う)のみを使って拡大像を得る顕微鏡。像の輝度は低いが、高いコントラストの観察像となる。
- 位相差顕微鏡 (phase-contrast microscope):観察する試料と背景との屈折率差を明暗差に変えて観察できるしくみの顕微 鏡。像の輝度・コントラストともに高い。人工的に発生させた陰影・コントラストである点は、間違った解釈をしないよ うにしなければならない。暗く見えるところに、いつも物質が集積している訳ではないため。
- 解像度 (resolution): 画像の細かさを表現する指標で、一定間隔に何本の線や点が存在するか(空間周波数)で表現した もの。下の分解能の逆数に相当する。
- 階 調 (gradation, gray level):画像の明暗値 (デジタル値)を示す段階の数。8 ビットは 2⁸ = 256 階調、12 ビットは 2¹² = 4096 階調、32 ビットは 2³² = 4,294,967,296 階調に相当。
- カイモグラフ (kymograph):動画の中で、ある決まった線上のデータを抽出し、これを Y 軸、時間軸(コマ数)を X 軸と して並べ直した二次元表示の画像データ。
- 輝度データ (brightness):画像の中の各ピクセルの明暗を数値データで示したもの。
- 空間周波数 (spatial frequency):単位距離内に何本の線や点が存在するかを示す指標。
- ケイソウ (diatom):細胞壁に種ごとに決まった模様や周期のパターンを持つのが特徴の藻類。光学顕微鏡の性能を確認す るための試料として古くから使われて来た。
- コンデンサ絞り (aperture stop, condenser stop):コンデンサと照明ランプの間にある絞り。顕微鏡を通過する光の広が り角(光束という)を調節する役割を持つ。観察像の明るさが変わるが、観察像のコントラストや分解能も同時に変化す ることがわかっている。
- コンデンサレンズ (condenser lens):光学顕微鏡の観察試料と光源の間に配置されているレンズ。光源の光を集光して試 料に照射するために用いる。コンデンサレンズの性能は、観察像のコントラストや分解能にも影響する。
- コントラスト (contrast): 観察画像の中でもっとも明るい点と暗い点の差を示す指標。
- コントロール (control): 実験・観察を実施するときに、実験操作を施すグループと比較するために必ず準備する非操作実験グループ(対照実験グループ)。
- 視野絞り (field stop):コンデンサ絞りと照明装置の間に配置されていて、観察する試料の照明領域(照野とも言う)を 制限するために使用する絞り。
- 焦 点 (focus):集光レンズで光がもっとも集まる箇所。あるいは、試料から出発した光が、観察像の上で集まって、明瞭 な像を投影させる位置。

- 走査電子顕微鏡 (scanning electron microscope): 観察試料へ細く絞った電子線(一次電子)を操作しながら照射し、反 射する電子(二次電子)を集めて拡大像を得る方式の顕微鏡。
- ピクセル数(ピクセルサイズ)(pixel number): デジタル化した画像で、XY方向に細分化した最小単位をピクセルとよぶ。 そのピクセルの総数で示した画像の精度を示す数値。 ピクセルサイズは、その最小単位の観察試料上での大きさ、つま り、顕微鏡拡大像上の何ミクロンに相当するかを示す用語としても使われる。
- プレパラート (preparat [独]): 光学顕微鏡観察するために、試料をスライドガラス上に載せたもの。多くの場合、0.17 mm 厚のカバーガラスを載せる(載せたものを観察するように顕微鏡の光学系が設計されている)。 Prepared と同じ意味のドイ ツ語から来た呼称。
- 分解能 (resolution): 画像の細かさを表現する指標で、判別可能な2点、あるいは2線間の最小距離で表現したもの。上の解像度の逆数に相当する。
- ホワイトバランス (white balance):画像の中の赤~青の色調を、白色光源を使った照明条件下で観察した状態に近くなる ように人工的に加工する作業や画像処理操作を指す。あるいは、その目的で使用する処理ソフトや光学フィルター。
- 明視野照明 (bright-filed illumination microscope): 観察する試料を透過した光(吸収光以外、回折光・散乱光も含む) を使って観察する顕微鏡で、像は明るいが、低いコントラストとなることが多い。

光学顕微鏡のしくみ

光学顕微鏡と生命科学の接点は、レーウェンフック(1632-1723)やロバート・フック(1635-1703)らが、実用的な光学顕微鏡を開発して使っていた 17 世紀後半までさかのぼることができ ます。その後、300年以上も経過していますが、その中で技術的に大きく発展した重要な時期を 3 つあげることができます。

一つ目は19世紀後半です。物理学者のアッベ(1873)やレーリー(1874)が光学の理論が確立し ¹⁾、レンズを設計したり製作したりする上で、重要な指針を与えてくれました。二つ目は20世 紀半、位相差顕微鏡や微分干渉顕微鏡など、生体試料を染色せずに観察できる観察法が発明され た時期です。当時、すでに電子線を使った電子顕微鏡は実用化されつつあったので、細かな構造 を高い解像度で観察できるという点で、光学顕微鏡は電子顕微鏡にはとても太刀打ちできませ んでした。しかし、化学的な固定や染色剤で染める処理が必要なく、生きたままの試料を直接観 察できるようになったのは大きな技術革新でした。三つ目は、この20~30年ほどの間に著しく 改良が進んだ蛍光顕微鏡や共焦点蛍光顕微鏡などの最新技術です。探している特定の物質に蛍 光標識して観察できるようになりました。さらに、画像処理技術を駆使した超分解能顕微鏡も21 世紀に入って次々に考案され、現在の生命科学分野では不可欠の技術となっています。このよう な顕微鏡技術の発展の歴史を振りかえる形で、光学顕微鏡の基礎的な原理から、最新の技術まで を解説してゆきたいと思います。

§光学顕微鏡の分解能

光学顕微鏡で用いる光を可視光と言います。電磁波とよばれる波の一種ですが、水面を伝わる 波と同じように、波の山と山との間(谷と谷でも同じ)の距離(波長)を使ってその種類を区別 します。0.36~0.83 µm(360~830 nm)ほどの波長です。これより短い波長のもの(紫外線) や長いもの(赤外線)はヒトの目には見えず、また、さまざまな事情で顕微鏡にも使いにくい光 です。可視光線は、ちょうど太陽光に最も多く含まれる波長の光で、その波長の光が見えるよう に、太陽光線のもと、ヒトが進化して来たことを意味します。窓ガラスなどの素材(ケイ酸ナト リウム)は、この可視光線をほとんど吸収せず透過する結果(図 1)、透明に透き通って見えま す。ガラスが顕微鏡の大事な部品となる光学レンズの素材としても使用できるのはそのそのた めです。私たちの体の主成分は水やタンパク質ですが、こういった物質も幸いなことに可視光線

図 1. 生体の物質、水、ガラスの光吸収と光の波長の関係³⁾。縦軸は吸収率を相対値で示しています。横軸は波長をナノ メーター(nm、ミクロンの 1000 分の 1)の単位で表示しています。Cytochrome b(チトクロームb) fat(脂肪) water (水)は、可視光線の吸収率は小さく、hemoglobin(ヘモグロビン)色素のため多少吸収します。Synthetic fused silica (合成ガラス)は、それらよりずっと吸収が少なく透明に見えます。恒星の温度は絶対温度(K)で示してあります。星の 温度が高いほど、青く見えますが、これは光の波長の分布が左側に片寄るためです。顕微鏡の光源でも同じ現象が見られ ます。

顕微鏡の性能を決める要因はたくさんありますが、その中でも っとも重要なものは分解能です。分解能とは、ある接近した2つ の点が、それ以上近づくと、拡大像の上で区別できなくなる限界 の距離に相当します(図2)。解像度とよばれることもあります。 その限界となる距離(*d*)はどのようになるか、いろいろな研究 者が複雑な理論的考察を行ってきました。その結果、一般に下の ような式で表現できることがわかっています。

$$d = \kappa \cdot \frac{\lambda}{N.A._{obi}}$$

 $\begin{array}{c}
a \\
b \\
c \\
c \\
d \\
e \\
f \\
\end{array}$

図2.小さな点は光学顕微鏡で 観察するとある広がりをもっ たパターン(a~f)となります。 2点が接近すると区別できな くなります(e~f)。この像は顕 微鏡写真ではなく、コンピュー タを使って理論的に予測した 像です。

 λ (ラムダ)は光の波長です。 κ (カッパ)は、一種の比例係 数です。少し複雑なので後で解説します。 $N.A._{obi}$ は非常に重要な

$$N.A._{obi} = n \cdot \sin \theta_{obi}$$

の式で計算します。 θ_{obj} は、今、皆さんがミクロンサイズになって観察される側の試料になった と想像してください。目の前にあるのは大きな対物レンズで、多分、そこを通して皆さんを眺め ている観察者の眼などが見えるかも知れません。この対物レンズの窓の広がりを示す角度が θ_{obj}

です。 n は皆さんのまわりの物質の屈折率で、光のスピードがどれだけ遅くなったかを示す数値です。空気なら 1.0 程度、ガラスなら 1.5 程度です $^{(4)}$ 。数学で習う三角関数、 $\sin \theta_{obj}$ は、 θ_{obj} の角度を持つ直角三角形の斜辺と他の一辺 の比ですが、これは 1 よりは決して大きな値にはなりませ ん。つまり、上の式から $N.A._{obj}$ はどんなに大きくても最大 nの値にしかならないことがわかります。

現在、*N.A.*_{obj}は最大 1.4~1.7 の対物レンズが市販され ています。図 3 のように、対物レンズの側面には倍率や鏡 筒の長さ(接眼レンズと対物レンズの間の距離)と並んで *N.A.*_{obj}が必ず表記されています。

図3.一般的な対物レンズ側面の表示

さて、対物レンズの反対側にはコンデンサレンズというものがあって、そこから出てくる光で 観察試料は照明されています。さきほど、小さくなった皆さんが対物レンズを眺めたのと同じよ うに、反対側の足もとを見ると、そこに見えるコンデンサレンズでも、同じように広がり程度を 示す開口数(*N.A._{con}*)を定義することができます ⁵⁾。この 2 つの開口数の比、R = *N.A._{con} / N.A._{obj}*

も、像の分解能を決める大切な数値です。前の分解能の式 の中に出てきた *к* (カッパ)と R との関係が図 4 のように なっていることがわかったからです。この関係は、ホプキ ンス(1950)⁶⁾によって計算されました。アッベやレーリー の示した理論もすべて網羅したもので⁷⁾、実際に私たちが 使用する光学顕微鏡の分解能をよく表現していると言われ ています。この式から、分解能を改善するには、

- i) 波長を短くする
- ii) *ĸ*は小さくする(Rを大きくする)
- iii) *N.A._{obi}*を大きくする

図 4 .ホプキンスらの計算による 2 つの パラメタ、 と R との関係を示す。

の三つの選択肢しかないことがわかります。分解能の限界は、0.2 ミクロンほどで、これよりも 接近した2つの点は、光学顕微鏡を使って判別することは不可能です。 見えるか見えないか?ど この位置にあるか?と言ったこととは別の問題なので、混乱しないようにして下さい。分解能は 2 点が区別できるかどうかということに限った場合の話ですが、像の鮮明さに一番大きく影響す る大切な数値です。

上の開口数の比、R は、観察像の明暗の差となるコントラストにも大きな影響を与えることが わかっています。通常の明視野照明で観察する場合、経験的に R=0.8 程度がもっとも自然な印 象のコントラストを与え、肉眼での観察や写真撮影にはこの条件が観察するのが最適です。 $N.A._{con}$ を大きくする(R>1.0、コンデンサ絞りを大きく開放する)と観察像はコントラストが低 下してピンボケのような像となります。逆に、 $N.A._{con}$ を小さくする(R<0.3、コンデンサ絞りを 小さく絞る)と不自然に強調されたコントラストの像となります。これは光学顕微鏡を使う時に よく経験することかと思います。また、焦点の合う部分の厚み(物体深度)は

物体深度 =
$$\frac{\lambda \sqrt{n^2 - (N.A_{obj})^2}}{(N.A_{obj})^2}$$

の式で決まります。さらに、観察試料と対物レンズ面までの距離(作動距離)や観察像の明る さも

作動距離
$$\propto \frac{N.A._{obj}}{\sqrt{n^2 - (N.A._{obj})^2}}$$
、 観察像の明るさ $\propto \frac{N.A._{obj}^2}{Gamma^2}$

のように、N.A._{obi}と切っても切れない深い関係にあります。 このように N.A._{obi}は、分解能以外にも光学顕微鏡のいろい ろな性能を決定する重要な数値となっています。

位相差顕微鏡 §

位相差顕微鏡や微分干渉顕微鏡は、生体試料を観察する 目的で使われます。特にゼルニケ⁸⁾により発明された位相 差顕微鏡は、簡単なレンズの構成で実現できるので、一般に ひろく使われています。観察試料と背景との間にある屈折 ついた対物レンズを必ず組にして使用し 率の差(前述のように、光のスピードの差を生みます)を明 色のリングで示す)を照明する光が通過 暗の差として変換して観察することができます。

図5.位相差顕微鏡の構成。リング上の絞 りのついたコンデンサレンズと位相板の ます。位相板の中のある決まった場所(灰 するように調整して使わなければなりま せん。

そのしくみを図5に示してあります。位相差顕微鏡の特 長はその照明光です。コンデンサレンズのすぐ下にあるリ ング状の絞りを通った光だけを使います。また、この光が 対物レンズの中のある決まった場所を通るように設計さ れていて、そこに位相板とよばれる特殊なフィルターが置 かれています。対物レンズの倍率が変わるとこの位相板の 大きさも変わります。リング絞りのサイズも合わせて変え なければなりません。もちろん、二つの光軸中心が一致し ていなければならないので、位相差顕微鏡ではその調節の ためのツマミなどが附属しています。リング絞りは、コン デンサーレンズに附属しているターレットとよばれる円 板をまわして変えられるようになっているのが一般的です。

図 6 .位相差顕微鏡(ブライトコントラ スト)で観察したゾウリムシ。

観察像の明暗コントラストを生み出す上で重要な原理は、観察する資料を通過した光(図5の 回折光)は1/4 波長分だけスピードダウンして遅れたと見なせる点です。これを位相差といいま す。これは数学的な一種の近似計算ですが、そう厚みの厚くない観察試料では、多くの場合正し い計算となります。そこで、背景の何も試料に当たっていない光を1/4 波長すすめたり、逆に、 遅らせたりといったことをします。これが位相板の役割です。この光が最終的に観察像の上で試 料を通ってきた光と重ね合わさりますが、そのとき、1/2 波長分の差となって山と谷が一致する 場合には観察像の上では互いに打ち消し合い(暗く観察される)ます。山と山が重なると強め合 い(明るく観察される)ます。それぞれ、ダークコントラスト像(図 6)、プライトコントラス ト像とよばれますが、対物レンズの中の位相板の種類で、この違いが出ます。光吸収の少ない生 体試料でも、明暗の差をつけて明瞭に見える特長があります。小さな細胞内構造や厚みのない細 胞の観察などに最適です。

観察試料を通過する光(回折光)の通り道、あるいは、試料の厚み・屈折率・周期構造のある なしによっても実際は微妙に変わります⁹⁾。上の近似計算が必ずしもいつも正しくはありませ ん。また、位相板の決まった場所を期待通りに通過しない光もあります。つまり、位相差顕微鏡 の計算ミスが時々発生します。サイズの大きな構造物(細胞体や核)や屈折率が極端に異なる物 では、そこにはないはずの縁取りの縞模様が見えたり、白黒が反転したりするなどの問題が生じ ます。これは位相差顕微鏡を使う上での注意事項です。見えているからといって、そこにものが あるとは限りません。 位相差顕微鏡と並んで、微分干渉顕微鏡も生きた細胞な どの観察に使用されています。観察試料の中で、ある決ま った方向へ、わずかな距離(分解能以下)離れた2点間の 屈折率の差を、白黒のコントラストの差として観察できる ようになっています。ちょっと複雑ですが。

図 7 に原理を示します。光は波の一種で、その振動の方 向は水面の波と同じです。進む方向に対して垂直です。あ る垂直な平面の中だけで振動します。普通の光はいろんな 方向に振動する光がミックスされたものですが、1 平面の ものだけをフィルターで取りだしたものを偏光とよびま す。そのようなフィルターを偏光板とよびます。微分干渉 顕微鏡はこの偏光を使います。

光源からの光をまず、偏光板(ポラライザ)を通して偏 図7. 微分干渉顕微鏡のしくみ。ウォラス 光にします、次にウォラストンプリズムとよばれる特殊な キンプリズムに偏光を通すことで、ABの 異なる道筋を通る互いに直交する2種類の 光学素子を通過させます。この素子は、ある決まった振動 光に分けることができます。

面の光を、2つの直交する光に分けます。しかも、それら が横方向へわずかにずれた偏光であるのが特長です(図7 のA、B光路)。この調整はなかなか微妙で、もちろん光 源の光も決まった方向への偏光となっていなければなり ません。プリズムの置く角度も重要です。

図 7 では、2 つに分けた光の片方、B 光路だけが観察す る試料の中を通過するような場合を示してあります。この 場合、B 光路の光は、試料の厚みと屈折率の分だけ進行が 遅れた(位相が遅れた)光となります。あとは、位相差顕 微鏡と似ていて、この位相差を白黒コントラストへと変換

図8.微分干渉顕微鏡で観察したオパリナ の繊毛。左下側に向かって影が付いてみえ ます。この陰影のおかげで、細かな細胞内の 顆粒がよく見えます。

すると、像が見えて来ます。この操作は、対物レンズの後のノマルスキープリズム¹⁰⁾ によって 行われます。ノマルスキープリズムは発明者の名前が付いたものですが、実際のしくみはウォラ ストンプリズムと同じです。二つの光路の光を再合体させて重ね合うようにします。背景の照明 光が邪魔なので、アナライザとよばれる偏光板で取り除くと、A と B、二つの光の間で強め合っ たり、弱め合ったりする様子が、観察像の上で見えて来ます。 AB 二つの光路の横方向のずれは、光 学顕微鏡の分解能よりも小さくなるよ うに設計されています。ごく近距離の間 の屈折率の差となります。数学的にはこ れは「微分値」と同じようなものなので、 「微分干渉顕微鏡」とよばれるようにな りました。「干渉」は、2種類の光が重な って強め合ったり弱め合ったりする現 象のことを指します。微分干渉顕微で観 察すると全体が灰色で一見コントラス

図 9. 微小管は細胞の中にある直径約 0.03 ミクロンの繊維です。 左は、微分干渉顕微鏡で観察したもので、右が暗視野照明法で観察 したものです。黒い棒は、10 ミクロンの長さを示します。

トの低いピンボケのように見えますが、デジタルカメラで撮影した後、コントラストを強める処理を行うと、格段に像が改善されます(図8、9)。0.03 ミクロンの細い繊維(微小管など)や直径0.05 ミクロンの細胞内小胞など、極めて小さな構造物も観察できます¹¹⁾。これは分解能が改善されたのではなく、コントラストを高めることで、検出する能力が改善されたためです。

設計上、コンデンサレンズ、対物レンズ、両方とも最大限まで*N.A._{con}、および N.A._{obj}*を大き くして使用できます。つまり、光学顕微鏡の分解能の限界まで解像度を上げることができます。 また、普通の明視野照明や位相差顕微鏡に比べると光学的な切片効果¹²⁾も非常に優れていると いう特長があります。光源の光を100%使うのではなく、一部を偏光として使うので、観察像が 暗い点、また、観察するものに一方向へ影が付いて見える(図の AB 光路のずれの方向へ)があ る点が欠点です。繊維状のものなどは、方向によって見え方が大きく異なります。見えているか らといって、その形のままであるとは限りません。

§ 暗視野(照明)顕微鏡

暗視野顕微鏡は、観察する試料によって散乱したり回折 したりする光だけを観察する方法です。図 10 に示したよ うな、コンデンサレンズを使います。この光学系は、位相 差顕微鏡によく似ていますが、対物レンズは、後述する開 口数の問題さえなければ、どのようなタイプのものでも構 いません。位相差顕微鏡と異なっている点は、照明する光 が直接対物レンズの内部へは入射しないように設計して ある点です。大きな開き角(*N.A.con*)の光だけで試料を照 明するようになっています。経験的に*N.A.con* > 1.0 ~ 1.2 × *N.A.obj*の条件を選ぶと、明暗のコントラストのはっきりし

た像となることがわかっています。*N.A._{obj}*が 0.05~0.5 程度の対物レンズを使用する場合には、 コンデンサレンズのすぐ下側(開口絞りのある位置)に、直径 10 数 mm の黒い紙(遮光板)を 置くだけで暗視野照明を自作することもできます。

N.A._{obj}の大きな対物レンズ(倍率40倍以上の対物レンズなど)の場合には、より大きなN.A._{con} が必要となるので、特殊な反射凹面鏡を付けた専用のコンデンサレンズを使用することいなり ます。さらに、N.A._{obj}が大きな場合で、1.2以上の対物レンズ(倍率100倍の対物レンズなど) では、N.A._{con} > 1.0~1.2×N.A._{obj}の条件を満たすようなコンデンサはなく、光学系として設計 もできない(技術的に作成できない)ので、暗視野顕微鏡とすることは残念ながらできません。 やむなく、対物レンズの開口数を小さくして(可変のものがあるので) N.A._{obj}を0.7~0.9程度 にして使用します。この時の問題は、すでに前に解説しましたが、分解能が低下する点です(図 4、および、ホプキンスの式を参照してください)。

暗視野顕微鏡では、背景が暗く、ものが白く光って見えます。コントラストの高い観察像となるものの、像全体の明るさはあまり強くできません。水銀灯などの非常に明るい光源や臨界照明法¹³⁾を用いることで像を明るくすることもできますが、写真撮影の場合には感度の高いフィルムやカメラを使う必要が出てきます。微小管や細胞内の顆粒など非常に小さな構造物も高いコントラストで観察できる点が大きな特徴です(図9)。

暗視野顕微鏡で観察される光は、上では回折や散乱した光と言いましたが、正確にはミー散乱 とよばれるも現象です。空の雲が白く光って見えるのと同じ現象です(空が青く見えるのはレー リー散乱とよばれる現象)。ミー散乱は、観察する試料の大きさが、光の波長と同程度の場合に

起こる現象で、試料の内側の光の反射 や屈折によって説明することができま す。光の波長によってあまり散乱の強 さが大きく変わることはありません が、試料サイズに非常に大きく左右さ れます(図11)。そのため、観察試料の 中に1つでも大きなものが混入してい ると、そこからの強い散乱のために他 の微細な構造が観察できなってしまい ます。この理由で、密度が高いもの、厚 みのある試料などは、あまり暗視野顕 微鏡の観察には適しません。

図 11. ミー散乱による観察像の明るさとサイズとの関係¹⁴⁾。両 対数軸のプロットで、サイズによって大きく明るさが変わること がわかります。

<引用文献や補足の説明>

1) den Dekker, A.J. & van den Bos, A. J. Opt. Soc. Am. A, 14(3):547-557 (1997)

2) JIS Z 8120:2001

- 3) 水の吸光係数は Hale & Querry (1973)、タンパク質・脂肪の光吸収は Prahl, S. (Oregon Medical Laser Center)の web サイト (http://omlc.ogi.edu/spectra/)から引用。
- 4) 空気の屈折率は 1.000、水は 1.333、油浸オイルは 1.516 の値となる(波長 589.3 nm の標準 ナトリウムD線を使って計測された値)。
- 5) コンデンサレンズについている絞り(コンデンサ絞り、開口絞り)を開閉する事で 0~1の範囲で調節可能となる。油浸式コンデンサレンズでは、最大 1.3~1.4 まで *N.A._{con}*を調節可能なものもある。
- 6) Hopkins, H.H. & Barham, P.M. Proc. Phys. Soc. London, 63,270B :737-744 (1950).
- 7) 開口数の比Rを変えることで、照明光のコヒーレンス性が変化する。K=1 としたアッベの定義はコヒーレント照明条件(R=0)での分解能、K=0.61 としたレーリーの定義はインコヒーレント照明条件(R=∞)での分解能に相当する。
- 8) Zernike, F. Physica, 9:686-698, 974-986 (1942) .
- 9) 観察試料の大まかな周期構造は小さな回折光として、細かな周期構造は大きな回折光として 対物レンズ内を通過する。
- 10) ウォラストンプリズムと同じような機能を持つ光学素子で、対物レンズの後方に置くデザインのもの。
- 11) このような検出限界は、顕微鏡の分解能とはまったく別に議論をしなければならない。像の コントラスト、つまり、信号と背景光の強度比によって決まる。単一蛍光分子のように、ほと んど大きさのないものであって、背景光さえ十分に低くできれば、その分子があるかどうかを 敏感に検出できる。分解能が向上したのではないので、2つの色素がたまたま重なり合ってい ても、2つとして判別はできない。
- 12) 物体深度が浅く、また、焦点面を外すと像のコントラストが著しく低下するために、試料の ある断面だけを切り取って観察したかのような拡大像が得られること。
- 13)通常の光学顕微鏡はすべてケーラー照明という照明方法を採用している。ケーラー照明では、 照明光源の像をコンデンサレンズ絞りと同じ位置に形成させる。照明光をコンデンサレンズ 内へ平行光にして入射させると、観察試料同じ位置に照明光源の明るい縮小像を形成させる ことができる。この照明法を臨界照明法とよぶ。不均一な照明とはなるが、像の輝度を上げる 効果は高い。
- 14) ScatLb (ver.1.2, http://www.scatlab.com/)による計算。

動物生理学実験 B

キイロショウジョウバエの形態観察

キイロショウジョウバエ(Drosophila melanogaster)は、モーガンらが遺伝学の研究材料として選び、はじめ て詳細な遺伝子地図が作られた動物です(別冊補遺「Carolina, Drosophila Manual」参照)。そのキイロショウ ジョウバエは、ミニチュアのヒトではありませんが、約75%の遺伝子が,ヒトの疾患関連遺伝子とホモログ(進 化系統学上で共通の祖先から派生した類似性の高い遺伝子群)と考えられているため(Pandey and Nichols, 2011 Pharmacol. Rev 63:411-436)、ヒトでは決してできないような医学や生物学の研究も、キイロショウジョウバエ を実験材料として遂行することができます。実際に、ノーベル賞(1933年,1946年,1995年,2004年,2011年) の研究の実験材料となっています。

この実習では、医学や生物学研究の実験材料として、重要な位置付けにあるキイロショウジョウバエの外部形態を、実体顕微鏡を用いて観察し、解剖を行い、正確にスケッチする演習を行います。キイロショウジョウバエの研究では、伴性遺伝をするので、オス・メスの違いを、瞬時に見分けて実験しなくてはなりません。外部形態と解剖から、その違いを学びます(オス・メスの違いは、別冊補遺「Biology of Drosophila」を予習して来てください)。また、様々な遺伝子型の突然変異体のキイロショウジョウバエの表現型の違いを観察します。

実習内容

キイロショウジョウバエの取り扱いの方法を修得して、外部形態の概要を理解します。

遺伝子型の違う突然変異体の表現型を観察します。

精密解剖用の道具を自作して、オス・メスの区別を、外部・内部形態との違いに注目して観察します。

(注) ~ は、1~3日目の意味ではなく、作業の順番を示します。必ずしも1つを1日で完了させる必要はありません。 場合によっては、さかのぼって、同じ作業を繰り返すことも重要です。各自のペースで実施して、課題—1、2を実施し、 最終日(レポート提出日)に観察スケッチをレポートとしてまとめて提出します。 (注)各実験で持参する、あるいは、用意する機器類・物品のリスト (★:共通机で使用するもの)

各自持参するもの		実験ノート		筆記用具(HBの鉛筆)
共通机上		ショウジョウバエ培養瓶★		□ ショウジョウバエ取扱用の瓶★
		麻酔用氷またはドライアイズ	ス★	□ アルコール(ハエ廃棄用)★
		小毛筆		精密ピンセット(2種)
		キムワイプ		ステンレス微小虫針
		割り箸		A4 ケント紙
		高倍接眼レンズ(2種)WHSZ20X-H・WHSZ15X-H		
		スケール(定規)		ハエ固定用真空グリース★
		スライドガラス		カバーガラス
		小型シャーレ		針固定用木綿糸★
		アロンα(接着剤)★		紙ヤスリ(#400-#2,000)
		研磨用ラッピングフィルム(#1,200-#10,000)		
		カッターナイフ★		パスツールピペット
		昆虫用生理食塩水(50 mL チューブに分注★)		
		鉛筆削り★		黒紙
顕微鏡専用棚から		実体顕微鏡(Olympus SZ	. 61)) □ 光学顕微鏡(Olympus CX21

キイロショウジョウバエの取扱と外部形態の観察

キイロショウジョウバエは、体長 2-3 mm のサイズの小さなハエで、英語で fruit fly と呼ばれます。発酵して芳香を出している果物(リンゴやバナナなど)に集まり、卵を産み付け、10 日ほどで羽化します。メスは、その後、10 日で 500 個ほどの卵を産むので、急速に増やすことができ、理想的な実験動物の1つです。

)

分類学上は、動物界・節足動物門(単肢動物門)・昆虫綱・双翅目に分類されます。節足動物は、私たち哺乳類とは大 きく異なった構造を持っています。大きな違いは、節足の名前の由来の通りに、明確な体節構造を持っている点です。体 節を持つ点においては、ゴカイ(環形動物)やムカデ(多肢動物門)などとも共通する所があります。これらの動物は、いく つかの共通項を持っていて、同じ「仲間」と見なせる可能性があります。このため、外形上の特徴を調べて比較するだけで、 様々な動物の間の類縁関係を推測できます。体の構造に対する様々な解剖学上の名称も多くの場合、共通する名称が 使われています。

考えるポイント

◆動物の系統関係を(海綿動物、刺胞動物、軟体動物、扁形動物、環形動物、線形動物、節足動物、棘皮動物、原素動物、脊椎動物を含めて)系統樹として、描きなさい。また、各動物の具体的な例を記入して、キイロショウジョウバエ、ゴカイ、 ムカデ、ヒトがその系統樹のどの位置にあるのか明示しなさい。キイロショウジョウバエとヒトが系統学上どれくらい離れているのか、同じ構造を持つゴカイ、ムカデがどれくらい近いのか考えてみましょう。

◆キイロショウジョウバエを研究に用いる利点を考えてみてください。(ヒント: University of Manchester Fly Facility. <u>http://www.flyfacility.ls.manchester.ac.uk/forthepublic/</u> この中に Youtube の動画があるので参考にしてください)

◆体節とは何かを考えてみてください。(ヒント:エビやカニの例などから調べる)

(注)キイロショウジョウバエの詳細なデータが入手できる参照サイト

日本ショウジョウバエデーターベース <u>http://www.dgrc.kit.jp/~jdd/index.html</u> BSI 生物科学研究所 <u>http://bsikagaku.jp/insect/drosophila.pdf</u> スケッチは、基本的に A4 のケント紙(白色の厚紙)に、線画のみで、構造を明瞭に記載するように心がけます。陰影は つけません。色彩の強い部分や黒い構造物のある場合には、その箇所のみ点描にするか、文章で記述します。

また, 作成したスケッチには、形態の各部を指し示す名称とスケールバーを書き入れます。このために, 定規や対物マイ クロメーターを使用してください.

形態の観察には、補遺資料、各自で別個に調べる web 上の資料、実験室に置いてある教科書等を参考にします。文献上の記述と、ここで直接観察する形態は、どの点が共通し、どの点が異なっているのかを、この実習を通して理解し、それを記述(解剖スケッチ)することを目指します。可能な限り詳細で大きなスケッチ描写をすることを心がけます。

考えるポイント

なぜデジタルカメラではなく、スケッチが重要であるのか?

(ヒント: 生命科学の分野では、写真や映像だけではなく、私たちの肉眼で直接観察することは大切な作業です。肉眼で 観察すると、3 次元的な構造を正確に把握できます。もう一つ重要な点として、画像があったとしても、どの部分がノイズ(ゴ ミ)で、どの部分がシグナル(生物学的に重要な形態)であるのかの判断は人間がすることになります。この判断をするため には、実際に肉眼でよく観察することが大切になります。新しい発見のきっかけも、このような観察から生まれます。)

<実体顕微鏡の使い方>

実体顕微鏡は、倍率の大きな虫メガネです。通常の生物顕微鏡が、上下 左右が逆転して観察されるのに対して、正立像として観察されるので、小 さな試料を解剖しながら観察する実験には便利な機械です。

実体顕微鏡(Olympus SZ61)を使います。精密な機械なので、ぶつ けないように十分に注意しながら、各自の実験机まで運び、電源コードを 接続します。電源コードを接続する側と反対側の「OLYMPUS(黒色)」の マークのある方を手前にして置きます。同じ側にある銀色のツマミ(ネジ) (図中の A)をゆるめて、鏡筒を回転させ、接眼レンズを手前に向けます。 このネジは軽く締めておきます。

右側奥にある光源(LED ランプ)のスイッチ(図中の B)を入れます。 鏡筒背後に黒い短い円筒状のツマミ(図中の C)がありますが、これは光 源の明るさを変えるツマミです。左と右のツマミは、それぞれ、試料の下 側(図中の D)からと上側(図中の E)からの照明光の明るさを調整するた めのものです。透過光と反射光の2種類で照明できるようになっていま す。キイロショウジョウバエの観察では、主に反射光(上側からの照明)を使います。

Fig. B1

まずは、接眼レンズの間隔を各自の目幅に合わせて、左右の像が同時に見えるようにします。接眼レンズの付け根と左 右には目盛り付きのツマミがあります。付け根のものは、左右の視度調節を行うもので、左右の目で同じ様に焦点が合うよ うに調節します。接眼レンズの左右外側にあるツマミは、0.67~4.5 倍の倍率調節のためのものです。接眼レンズは、 WHSZ10X-H(10 倍)を主に使いますが、さらに高い倍率を試みたい場合には、WHSZ15X-H(15 倍)や WHSZ20X-H

(20 倍)を使います。これらの接眼レンズは、共通物品を置いた机の上にありますが、本数に制限があるので、使用後は必ずもとの場所に戻して、他の学生も使えるようにします。

< 生物顕微鏡の使い方 >

実習室には、さらに高い倍率で観察するための光学顕微鏡(実習用生物顕微鏡)もあります。使い方は、「動物生理学 A (光学顕微鏡観察と画像処理技術)」の中の「 光学顕微鏡の観察の方法と CCD カメラでの撮影方法の習得」を参考に します。実体顕微鏡は、通常、シャーレやスライドガラス上にそのまま置いた生物試料を観察する目的で使用しますが、こ の実習用生物顕微鏡は、その性能を発揮させるためには、スライドガラスの上に試料を置いて、さらに、その上に可能なら ばカバーガラスを被せたプレパラート(可能ならばできるだけ試料層を薄くして)を作成して観察することが推奨されていま す。これは試料の上下の面をフラットにすることで、光学的な条件を良くする意味があります。

<キイロショウジョウバエの種類と麻酔の方法>

野生型と複数の突然変異体のキイロショウジョウバエを使用します。野生型のものは東京理科大学の松野先生から贈与された Canton-S と呼ばれるストレイン(研究で用いる純系の昆虫)です。突然変異体は、例えば,飛翔能力を失った突然変異体(flightless)を扱います。この変異体では、野生型と外形上の大きな違いはあまりありませんが、飛翔するための筋肉(飛翔筋)の中にある繊維タンパク質アクチンが正常に発現しないために、翅のはばたき運動ができません。両者の構造ばかりではなく、運動や行動パターンを比較してください。麻酔から覚めても、飛び出すことがないために、扱いやすいキイロショウジョウバエです。これを含めて実習で扱う突然変異体の例(防衛医科大学 野口先生より寄贈)は、B-5 ページを参照して下さい。以下の操作を行います。

- a. まず、培養瓶を氷上で5分間ほど冷やして、ショウジョウバエ成虫を動かなくします。(冷やす時間が長いと死んでし まうので、5分後には室温に戻してください。)
- b. その培養瓶をマット(ゴム板やマウスパッドなど)の上に軽くたたきつけます。この作業で、ショウジョウバエ成虫が、 管の底に一旦落ちます。
- c. 培養瓶のキャップ(スポンジキャップ)を取り去り、即座に、上下逆にした他の培養瓶をその上に載せます。培養瓶が
 2本つながった状態になります。ハエは逃がさないように十分に注意してください。逃がした場合には、回収し、アル コールを入れた「死骸入れ」に廃棄します。
- d. 上の 2 つ連なった培養瓶をそのまま上下逆にして、空の瓶を下にします。その後、空瓶の下を軽くたたいて、成虫 だけを空の瓶に落とします。あまり、強くたたくと、幼虫・死骸・培養用の餌も落下しますので、注意します。成虫すべ てを回収する必要はありません。
- e. 2 つの瓶を分けて、それぞれマットの上に軽くたたきつけて、成虫を管の底に一旦落とします。 直後に、キャップをします。
- f. 元の培養瓶は、後日、蛹から羽化した成虫を再度回収できますので、そのまま、室温(あるいは、25)で保管します。
- g. 回収した成虫は、ドライアイス片を入れた発砲スチロール箱(約-50)の中で麻酔します。

氷温では、成虫は 20-30 分で動かなくなりますが、体温が室温に戻ると再び動き始めます。短時間の麻酔効果です。 キイロショウジョウバエに対しても大きな害は及ぼしません。ドライアイスは、冷却と炭酸ガス麻酔の両方の効果がありま す。炭酸ガスは、30 分程度の長い麻酔効果があることが知られています。長い時間、炭酸ガスにさらすと、成虫を殺傷さ せることもできます。その他にも揮発性の有機溶媒(エーテル、FlyNap など)を使う麻酔方法もありますが、これらは換気 の良い場所(ドラフト内)で使用します。有機溶媒系の麻酔剤は、強く作用させることで成虫を殺傷することができますが、 口器を突出させ、脚を丸めた状態で死ぬために、外観の観察には適さない場合もあります。麻酔方法は用途や観察目 的に応じて使い分けますが、ここでは、ドライアイスを用いた短時間麻酔をはじめに行い、スライドガラス上に観察しやす い様に固定します。観察中に麻酔作用がなくなり、動き始めた場合、ドライアイス片を入れた発砲スチロール箱内に、し ばらく置いて再度麻酔します。

<観察のための成虫固定方法>

麻酔あるいは殺傷した成虫をスライドガラスの上に固定して観察します。固定には、スライドガラスの上に、ごく少量の真空 グリースを塗布し、その上に成虫を観察したい向きに置きます。成虫の取り扱いには、小毛筆やピンセットを用います。毛 筆は、成虫を傷つけずに移動させるのに便利ですが、成虫の向きを自在に調節したりするのには不向きです。ピンセットを 用いるときは、翅や脚をつまんで持ち運びますが、ピンセットの先で傷つける恐れがあるために、どの部分に特に着目して 観察するかによってピンセットでつまむ箇所を考慮します。以下のような観察を行います。

<課題 1>

1-i) キイロショウジョウバエの外部形態(全体の形状)を、A4 ケント紙にできるだけ大きくスケッチしなさい。ここで、生物 学のスケッチと芸術としてのスケッチの違いはどこにあるのか考えてみましょう。生物学のスケッチは、生物の形態に関する 有用な情報を伝えることが目的で、第 3 者が見ても、明確に形態を同定できる必要があります。一方、芸術としてのスケッ チは、個人の印象を描くもので、そのスケッチを信頼しても、生物の形態は理解できません(例、パブロ・ピカソのキュビズ ム)。

剛毛の1本1本まで遺伝子で規定されています。よく観察してスケッチしてください。また、オスとメスの差にも着目して観察してください。文献上、性差のある箇所については、詳細をスケッチで示し、どの点が異なっているかを明確に示します。

スケッチで示した体の構造の各部の名称を、可能な限り詳細に記入します(目安:70か所以上)。名称は和名でも英名で も構いません。スケッチと同時に名称を記入する必要はなく、参考図書や web 情報をもとに、スケッチ完成後に名称を入 れても構いません。最後に、スケッチのおよそのサイズがわかるように、スケールを入れます。スケールは、正確に長さのわ かっている標準的な物差し(マイクロメーターなど)を、スケッチの傍らに併記するのが一般的です。

1-ii) 多くの昆虫は4枚の翅を持ちますが、キイロショウジョウバエは、昆虫綱双翅目に属します。この名称の由来となる構造上の特徴は何か、スケッチと文章によって明確に示しなさい。名称の記載方法、スケールの記述は、以下も含めて、 課題(1-i)と同じです。

1-iii)野生型キイロショウジョウバエと突然変異体の行動の違いや形態の違いをもし発見したら、それを、スケッチと文章 で記述しなさい。

実習で扱う突然変異体の例

(1) Stubble (2) Serrate (3) Brown (4) Glued (5) Anntenna Pedia (6) Act88F これらの特徴はFlybase(<u>http://flybase.org/</u>)に記載があるので調べてみましょう。

1-iv) 補遺資料「Biology of Drosophila (M. Demerec 編)」の中、外部形態について書かれた章の中から、各自が興味を持った構造について書かれた箇所(文章や図版)を1つだけ参照し、該当する構造を実際のスケッチで、できるだけ詳細に示しなさい。

解剖のための準備

<概要>

キイロショウジョウバエは小さな動物なので、内部構造を実体顕微鏡で解剖して観察するには特別な配慮が必要となります。 オスとメスの内部構造の大きな違いは、輸卵管や貯精管などのメス独特の構造と、精巣・輸精管等のオス独特の構造です が、成虫を解剖して比較することで、これらの構造を確認します。以下のような順番で解剖をして、課題に示す観察を行い ます。

- a. 麻酔して動けなくした成虫をできるだけ少量のグリースでスライドガラス上に固定し、腹部の周辺に生理食塩 水を数滴たらします(こぼさないよう注意)。
- b. 作成した微小ナイフを使い、腹部を中心軸に沿って後部から前部に向けて切開します。
- c. 内容物が出てきますが、これは適宜、生理食塩水を入れ替えることで洗浄します。
- d. 目的の構造が確認できたら、観察しやすいように、まわりの組織を取り除きます。生殖器の部分を取り出して、 観察しても構いません。
- e. 内部構造は透明なものが多いので、スライドガラスの下に黒い紙を敷くと見やすくなります。

<課題 2>

オス・メスの内部形態の違い

2-i) 自作した解剖道具を用い、オス・メスの個体をそれぞれ1匹ずつ解剖します。それぞれ生殖腺を切り出して、詳細な 構造を観察して、スケッチします。B-8 ページの図は、オス(Fig. B4)、メス(Fig. B5)の生殖腺の構造形成過程を、幼虫 から羽化直後まで記述した図です。この図を参考にして、スケッチ上の各部の名称を記入します。Fig. B6-7 にショウジョウ バエ成虫の生殖器の形状を示します。

2-ii) 成虫の testis(精巣)、ovary(卵巣)、 spermatheca(貯精嚢)、 seminal receptacle(受精嚢)のそれぞれ場所が 明確になったら、その部分を別のスライドガラス上に取ってカバーガラスをかけて潰すようにして内容物を観察します。 どの ようなものが含まれるか、生物顕微鏡(光学顕微鏡)で確認します。

<解剖用の用具の作成>

通常の精密ピンセットだけでは、キイロショウジョウバエの解剖は大変難しいため、ピンセットは先端を精密に研磨して使いやすく加工します。ピンセットの先端は、Fig. B2 のように正確に両側の先が重なっており、先端部分にわずかでも隙間のないことが重要です。

研磨には、研磨剤をつけた紙(商品名:ラッピングフィルム、フィニッシングペーパーなど)の小片を使います。共通机上 に、種々の番数(研磨剤の細かさを示す番号で、大きな番号ほど細かい)の研磨用紙が用意されています。番数を間違わ ないようにして(不明の場合には裏に番号を記載する)、必要なものを各実験台で使用します。研磨紙類は再利用可能な ので、使用後は、共通机上のもののプラスチックケースに戻します。

ピンセット先端を実体顕微鏡の下で慎重に研磨して、Fig. B2 のような形に仕上げます。失敗した場合、番数の小さな研 磨紙(目の粗い研磨剤)を使って、全体の形状を整えてから、再度、調整します。床に落とすと、ピンセットの先端を著しく 破損することもありますが、その場合にも、粗い目の研磨紙を使います。

ピンセットとともに、解剖用メスも重要な道具です。微小虫針を使って、Fig. B3で示すような、先端の鋭くとがった針(丸い断面形状)と精密メス(片側が刃状に研磨してあるもの)を作成します。この作業にも研磨紙を使用します。材料となる微小針を割り箸の先端に糸で結わいて固定(接着剤等使用)してから、ピンセットと同じ要領で研磨して、作成します。先端の鋭く尖った針は、加工してから割り箸の先(適当に切りそろえて、使い易い形状にしますが、ナイフ等の取扱は十分に気をつけてください)に取り付けても構いません。

Fig. B4

Successive stages in the pupal development of the male genital disc and testes. Hours shown indicate the time after puparium formation at which the various stages of development are reached. *a*, anal plates; *de*, ductus ejaculatorius; *ga*, genital arch; *gd*, genital disc; *pa*, paragonia; *sp*, sperm pump; *sv*, seminal vesicles (vasa efferentia); *t*, testis; *vd*, vas deferens. After Dobzhansky (1930).

Fig. B5

Successive stages in the pupal development of the female genital disc and the ovaries. Hours shown indicate the time after puparium formation at which the various stages of development are reached. *a*, anal plates; *bw*, body wall; *eg*, eggs; *gd*, genital disc; *in*, intestine; *o*, ovary; *ovd*, oviduct; *po*, parovaria; *spt*, spermatheca; *tr*, tubular receptacle; *va*, vagina; *vp*, vaginal plates. After Dobzhansky (1930).

Left: Zamore P. D. and Ma S. (2011) JoVE. 51.より

Right: (t) testis; (sv) seminal vesicle; (ag) accessory gland; (ad) anterior ejaculatory duct.

Kozopas et al., (1998) Genes & Development 12:1155-1165.より

Fig. B7. Middleton *et al.*, (2006) BMC Biology 4:17.より

<レポートの書き方>

研究論文の書き方で書きます。4年生の卒業論文や修士論文も同様のスタイルです。

題名:適切な題名を1文または箇条書きで書くこと。

著者:実際に研究を行った人の名前を書くこと。(今回のレポートでは、自分の名前を書く。)

要約:10 文以内程度に、全体をまとめること。

導入:研究の背景、この研究を行う理由、そして,研究の目的の3点を書くこと。

材料と方法:実験材料の生物の学名を、イタリックで記載すること。実験方法は、第3者が再現実験をできることを目的に 箇条書きではなく文章で書くこと。

結果:実験で得られた観察結果や測定結果を書くこと。(スケッチは結果の一部で"図1タイトル"などと示す。)

考察:導入で書いた研究目的が具体的にどこまで達成できたか(本研究の意義),これまでになされた過去の研究と本研究の結果を合わせて推定できること,今後の展望を書くこと。

謝辞:著者ではないが,研究上のお礼を伝えるべき外部の先生に感謝の意を表する。

参考文献:レポート作成の上で使用した文献を書くこと。(Web ページは HP 名、情報の在処、URL を記載。)

(考えるポイントで調べたことや考えたことは、導入や考察に適宜含めてください。)

考えるポイント

ある実験をした結果、教科書と違う結果になってしまいました。その時の実験レポートの書き方として最 も適切なものを、次の(1)から(4)の中から1つ選びなさい。

(1)実験をして得られた、教科書と違う結果をそのまま書く。

(2) 教科書に書いてある正しい結果を自分の結果として書く。

(3) 近くのうまくいった人の結果を自分の結果として書く。

(4)実験に失敗したことだけを書いてどうなったかは書かない。

<オプショナル>

時間に余裕のある学生は、以下のオプショナルの課題3と4にも挑戦してみましょう。(加点の対象です。) 実際に電子顕微鏡を扱えるのは、この実習のみです。貴重なチャンスを生かしてください。

<課題3>

キイロショウジョウバエの精子鞭毛は、ヒトの精子鞭毛やヒトの気管上皮の繊毛や緑藻類の Chlamydomonas reinhardtii の鞭毛と基本的に共通の構造をしています。透過型電子顕微鏡を使って、Chlamydomonas の鞭毛の切片を観察してみましょう。そのスケッチを描いてください。また、鞭毛の進化の歴史を調べてみましょう。

考えるポイント5 「鞭毛のどの構造までは光学顕微鏡の解像度で観察できて、どの大きさの構造からは電子顕微鏡でないと詳しく観察することができないでしょうか?電子顕微鏡でも見えない構造はどの大きさのものでしょうか?」<<課題4>

走査型電子顕微鏡を使って、キイロショウジョウバエの複眼を観察してみましょう。そのスケッチを描いてください。

考えるポイント6「キイロショウジョウバエの目は2つではありません。単眼と複眼があり、それぞれいくつあるでしょうか? それぞれの役割はどのようなものでしょうか?」

↓レでチェック <実験が終わったら>

光学顕微鏡は、電源を OFF にします。

用いた顕微鏡(レンズ以外の箇所のみ)を、蒸留水をつけたキムワイプで軽く拭きます。

接眼レンズの周辺(レンズ以外)を、70%アルコールをつけたキムワイプで拭きます。

電源コードを顕微鏡の後に巻き取ります。

接眼レンズの向きを使用前の向きに戻します。

ピンセットと解剖に用いた微小針は、70%アルコールをつけたキムワイプで拭きます。そのまま継続して使用する場合には、各自で保管します。

再利用可能な研磨紙はケースに戻します。

毎週水曜日は完全撤収日なので、顕微鏡を番号通りの棚に戻し、ピンセットと解剖に用いた微 小針は共通物品を置いた机に戻します。

掃除当番(別の当番表参照)は、この実習で使った全机・周辺床の清掃をします。

**

動物生理学実験 C

筋電図・神経興奮の記録と解析

この実習では、精密な信号増幅器を使って、生体の発生する電気的信号を計測する実験と、その信号の解析 方法について演習します。

生体の感覚受容、筋収縮、神経細胞などの活動、およびその制御は、すべて細胞膜の電気的な活動を介して 行われます。単細胞の生き物から、私たちのような複雑な構造の生き物まで、その電気的な興奮は極めて類似 した分子機構、チャネルタンパク質による膜電位の変化(感覚受容による電位変化や興奮の時に生じる活動電 位)によって発生します。具体的な観察記録の解析を通して、そのしくみを理解することが、この実験の目的 です。

実験材料の違いはあっても、生体の電気現象の記録方法は似かよった手法が使われます。このような生体の 発生する電気信号は、数ミリボルト(mV、1/1000 Vの電圧の単位)の微弱な電気信号であることが多く、正確 に計測・記録するには、雑音となる外部のノイズをどのように取り除くかが重要です。また、興奮、その結果、 発生する電流については、解説をテキスト後半にまとでありますので、実習の前には熟読し、内容を十分理解 しておくのが大切です。

この実験で得られるデータは、被験者の筋やカエルの神経が発生する電気的な信号です。電気的な刺激の強度を変えたりすると、その反応は大きく変わってきます。その変化をコンピュータに記録してデータとします。 得られたデータは、単に測定された数千個の数値が時間の順番に並んだだけのもので、エクセルなどの他のプログラムで読み取りグラフ表示します。数値化されたデータを使って、筋や神経の発生する信号はどのようなものか解析してレポートにまとめます(後述の「レポートを完成させる上での注意事項(C-13)」を参照)。 こういった実験データの操作の中で、場合によっては、ノイズを減らす目的や実験によるばらつきを見るために、平均値と標準偏差を求める作業、有効数字の取り扱いも必須です(テキスト末の「実習に役立つ統計学入門」を参照)。

この実験をスムーズに実施する上で、3つの大きなポイントがあります。1つ目は、さまざま測定装置・電 子機器・ソフトウェアに慣れて、それらを使いこなせるようになることです。装置のしくみをある程度理解す ることで、作業の効率は格段に向上します。2つ目は、私たち自身やカエルの神経を使って実験しますが、測 定の条件は時間とともに微妙に変化します。実験材料の状況が大きく変わることもあり、一般に生物試料を使 う場合、この点で十分な配慮が必要です。再現性を見るには、同じ条件で複数回の記録を取ること、場合によ っては、被験者や実験材料を変えても同じような結論に達するかどうか(通常は実験や研究上では必須)を確 認することも重要です。どのようにしたら、正確で再現性の良いデータが取れるかを配慮しながら実験します。 実験条件、たとえば、刺激の強さなどを変える順番(徐々に大きくする、小さくする、ランダムな順序かなど) や、頻度、間隔などにも配慮します。3つ目は、データの解析です。主にエクセルを使ってデータの処理を行 います。観察波形の変化について(下記参照)、実験条件でどのように変化するか調べます。それらの変化はど のようなものか、実験の途中であっても、およその傾向としては理解できるかと思います。解析とは、記録さ れた正確なデータに基づいて、できるだけ数字の上で具体的に結果を表現する工夫を指します。

データの解析やレポートをまとめる上で、次のような点に留意します。この実験では、刺激の強さ、刺激頻 度、温度など、実験の条件を変えた時、どのように観察結果が変わるかを調べる実験が中心です。このような 実験では、まず、(1) いくつかの実験条件で、予備的な観察を実施して、どのような変化が観察されるか、概要 を把握しておきます。(2) 次に、変化する理由が何かを考えます。これまで学んだ知識の中から、観察結果をう まく説明できるような仮説を考えます。(3) その変化に着目しつつ、できるだけ広い範囲で、実験条件を変化さ せて、再度、正確な記録をとります。(4) 実験後、結果を詳細に解析し、観察されるパラメータ(振幅、波の幅、 形や数の変化、時間の経過、遅延時間など)の中から、先に立てた仮説を検定するのに必要なものを選び出し、 実験条件によってどのように変化するか、グラフや表で示すことで表現します。(5) 解析の結果から、仮説がど の程度正しかったかを評価し、さらに、それを確かなものにするために、あるいは、何らかの修正を加えるな らば、そのための次の実験プランを提案します。具体的なレポートとしての記述に関しては、後述の「レポー トを完成させる上での注意事項(C-13)」を参照します。

装置の全容

<装置の概要>

電気的な信号を記録する時の装置の概要は以下の通りです。信号の流れの順番にリストしてあります。

- a. 実験試料(ヒトの掌や取り出したカエルの神経)。雑音(ノイズ)を防ぐために、アース線につな いだアルミ板を試料の下に置きます。
- b. 電気信号を検出する電極(皮膚に貼り付けて使用する電極やカエル神経を入れた箱に付いた電極)。
- c. 電極から増幅器へつなぐ信号線 (灰色の信号線で、中に3種類のリード線、赤(V₁/+)、黒(ア-ス線)、青(V₂/-)が入っています)。
- d. 増幅器(+/-)の信号線の間の電位を約 100 倍増幅します)。この時の電圧は、電極の間で流れる 電流の大きさ相当し、(+) (-)と電流が流れているときに、正の値になります。測定する電圧は、 膜電位などの絶対値ではなく、神経細胞や筋の外側を流れる電流の大きさを反映した相対値である ことに注意します。

- e. 増幅器の信号をコンピュータへ取り込む装置(サウンドプロセッサーを使用)。
- f. サウンドプロセッサーとコンピュータの間の接続(通常の USB ケーブル)。
- g. データを記録・表示するコンピュータ
- h. 解析用のソフト (Visual Analyzer とエクセル)。 記録したデータはエクセルなどの表計算・グラフ化のためのソフトで処理します。

この他に、実験の種類によっては、以下の装置も使用します。

- i. 電気刺激装置(神経に電気刺激を与えるときに使用、補遺参照)。
- j. 握力計(EMG測定時に被験者の出している力を測定)。

<増幅器の特性>

ここで用いる増幅器は、差動増幅器と呼ばれる装置です。手製ですが高性能の増幅素子を内蔵し、低ノイズの増幅が可能な装置です。電源は、直流(+18Vと-18V、または、+12Vと-12V)の正負2電源を用います。同時に、0VとなるGND(接地)にも接続されていなければなりません。電源から電圧が正しく出ていること、増幅器が電源に正しく接続されていることを確認します(デモで紹介するグループの結線方法を参照します)。

用いる増幅器(左:表のスイッチパネル、中:入力、出力、電源リード線、右:内部の構造)

増幅器へは、指定された電極(上記リストの。)を使って、2本の信号(V_{1(赤)}とV_{2(青)})へ入力しますが、 その間の電圧の差(V₁-V₂)を約 100 倍に増幅して出力できるようになっています。出力の信号は、GND (接地)に対しての値として得られます。被験者に、V₁とV₂に相当する入力値を得るための2つの電極を 動かない様に注意して、固定用テープを使いしっかりと固定します。電極の位置が不安定でたびたび動くと、 測定される電位に再現性が無くなり、精度の悪い実験となるので要注意です。電気現象は皮膚下の組織(主 に筋)で起こりますが、皮膚の電気的な抵抗を減らすために、導電性のグリースも使います。この2つの電 極(V₁と V₂)と同時に、必ず GND の線もアルミ板を介して被験者につながっているようにします。これ は雑音を軽減する意味があります。これらの配線の詳細は、実際のデモンストレーションで示します。

<増幅器からコンピュータへ>

増幅器の出力は、VoとGNDの間の電圧差として得られます。 この信号をサウンドプロセッサーのR(赤、右)の信号として ONKYO社製の装置(補遺参照)に入力します(赤色のピンジャ ック)。L(白、左)には、電気刺激装置のTRIG出力(後述)か らの結線をつなぎます。これは電気的な記録を開始するタイミン グを合わせるTrigger信号として用います。

<用いる記録用ソフトの概要>

Visual Analyzer(付属資料:計測ソフト Visual Analyzer の使用方法」参照)はコンピュータの音声信 号(ステレオの右(R)と左(L)の信号)を表示したり、周波数を調べたりするためのソフトウェアです。別 紙の使用方法を参照します。実際の実験記録に取りかかる前に、信号の記録や再生の練習をおこない、この ソフトウェアの機能・記録方式・使用上の制約・Trigger 機能などを十分に理解し慣れておくことが大切で す。データの記録は、音声信号として一旦、*.tee や*.wav として保存することもできます。この実習では、 tee 形式、および、エクセルで処理するためにテキストファイルの両方の形式で保存します(C-22 参照)。

エクセルは、一般に、65,000 行×256 列のデータが使いやすいデータ数です。これに対して、上のサウン ドプロセッサーは96kHz の非常に速い速度でデータを変換して、コンピュータに送り込むことができます。 また、Visual Analyzer は、11~96kHz の速度でデータを取り込み処理できるソフトです。筋電図などの電気 的な信号は、0~100 ミリ秒の現象、周波数では0~2,000Hz の周波数の信号が理想的な解析領域です。この ような観察対象、計算処理上の制限を考慮して、データの取り込みの速度(Sampling 速度 Sampling frequency などと呼びます)や、記録するサイズ(何行分のデータとするか)を選びます。例えば、100 ミリ秒(0.1 秒)の短い時間の間に終わってしまう現象を96kHz で 10 分間も記録したとします。その場合、せっかく記 録した 96,000(Hz)×600(秒)個の膨大な数のデータの中で、599.9/600 (99.98%)は意味のないデータとし て捨てることになり、データ処理の無駄な時間を費やします。この実験では、11~49 kHz のデータ取り込 み速度で1秒間(データ数で合計 11,000~49,000 行のデータ)を標準として記録するのがベストです。

<エクセルによるデータの計算>

一般に実験で得られた多量のデータを処理する場合、それぞれの目的に合った専用ソフトを開発したり、購入したりして処理しますが、ここでは、汎用性の高いエクセルを使った処理を行います。得られたデータをもとに、グラフ、ヒストグラムや表などを作成します。平均値「=Average(**:**)」や標準偏差「=Stdev(**:**)」などのエクセルの関数も必要に応じて使います。Visual analyzer で作成したデータをエクセルで読み込む方法は、後述の解説(<u>§</u>付属資料:データをエクセルで読み出す方法」)を参照します。

実験の様子

<補足>

用いる作動増幅器は、下のような10個ほどの簡単な素子を配置したものです。2つの入力信号の間の電圧差 (v)を正確に増幅します。同じように変動する大きな雑音が含まれていても、その差だけを増幅するので、 生体の発生する微小電圧(心電図や脳波など)を測定するための増幅器として、よく使われる電子回路です。

<筋誘発電位の計測>

上腕部の神経(運動神経・感覚神経も含まれる)を直接電気刺激すると、そこで生じた神経の興奮は掌部 へと伝わり、そこにある複数運の筋がほぼ同時に興奮・収縮します。その興奮を大きな電気信号として、通 常、刺激からある一定の時間(約0.02~0.03秒後)の後に観察ができます。人為的な刺激によって誘発され る電位変化という意味で、誘発性の筋電図(筋電位)と呼ばれています。ここでは、刺激後、どのような時 間経過で筋の電気的な興奮が起こるのか、刺激条件(強さや2回の連続刺激)でどのように反応が変わるか を調べることを目標にします。被験者によっては、計測しやすい人、雑音が大きく測定しにくい人などある かも知れません。予備実験でグループの中から測定しやすい被験者2名を選び、本番の被験者とします。

手足の骨格筋は、脊髄にある種々の神経繊維につながっています。この中で、筋収縮を直接支配する神経 (遠心性の神経)を運動神経と呼びます。私たちが手足の筋を収縮させるとき(随意運動の時)は、約 10 ~20Hz の一連のバースト状(頻度の高い繰り返し信号)の神経興奮が運動神経を伝わり、筋は連続的な収 縮(強縮、tetanus)を引き起こします。しかし、人為的に短い単パルス刺激を与えた場合でも筋収縮はおこ り、この時は、1回の短い収縮となります。短縮(twitch)と呼ばれる収縮現象です。

ここでは、短縮の時に筋で発生する電気的な信号(筋細胞の興奮による筋電図)を計測し、人工的に与え た刺激パルスとの時間的な関係、刺激の強度や刺激電極の極性との関係などを調べます。刺激強度を非常に 強くした場合、運動神経とは別の筋紡錘の神経(感覚神経)が刺激され、脊髄へのフィードバックル - プを 経由し、2つ目の筋収縮が観察されることもあります。強い刺激は多少の痛みを感ずることもあるので、刺 激強度を変える実験は、被験者に十分に了解を得た上で実施します。高い頻度での繰り返し刺激は避けます。 心臓に問題のある場合やペースメーカーなどを使用している学生は、被験者とならず、計測やデータ記録の 担当に専念します。皮膚に刺激電極や記録電極を付けるときには、導電性のペーストを使用しますが、使用 後はアルコールでふき取るようにします。刺激性のあるペーストではないものの、皮膚の過敏な学生も被験 者になるのは避けます。

4~5名で1組のグループ(別表参照)を作ります。被験者を選び、筋収縮にともなう誘発性の筋電位を 記録します。被験者以外は、他の計測装置、コンピュータ等の操作を行います。

神経の刺激には「電気刺激装置(補遺資料参照)」を用います。この装置は、0.1~1ミリ秒(ms)の 短い時間で、振幅0~20Vほどの矩形の電気パルスを発生させる装置です。接地とは直接つながってい ない回路(アイソレーターと呼びます)を使った刺激電流を発生します。これは増幅器や計測系への 電流が直接流れこむのを防ぎ、刺激電流がノイズとして影響しにくい特徴があります。以下の手順で、 上腕を使った筋誘発電位の計測を行います。

<実験の手順>

- a. 電気刺激装置の出力を最小にした状態で、ON にします(出力端子左側のツマミ)。繰り返しの刺激 (repeat の選択)とします。刺激の周波数は 0.5~1Hz、刺激時間(duration)は 0.5~1.0 ms とします。
- b. 上腕部を露出し、刺激電極をヒジに当てる。物にぶつけると指先にシビレを感ずる箇所があります が、その敏感な場所に相当します。
- c. 上腕部は、接地に接続された(接地された)アルミ板上に、手のひらを上向きにして置きます。ア ルミ板は、オシロスコ - プの GND 端子、増幅器入力部の GND 端子とつながっていることを確認し ます。
- d. 刺激電圧を次第に強くしながら、指先の筋肉(小指の付け根付近)が収縮を始める刺激強度、刺激
 場所を見つけます。痛みを感ずることなく小指付近の筋肉が収縮する条件(刺激強度と刺激電極の
 位置)を見つけます。
- e. 電気刺激がうまく実施できない場合は、刺激電極のペーストを追加したり(スポンジ状の先端部や その内側へも) 電極の位置を多少前後左右に移動させたりして、もっとも効率よく刺激できる箇所 (安定した記録の取れる場所)を見つけます。
- f. 掌(小指の付け根付近)の筋収縮が安定して観察されるような刺激場所を見つけたら、刺激装置の 出力をOFF(出力端子の左側の黒いボタンを押す)にします。一旦、最適な刺激条件を見つけたら、 被験者は刺激電極の位置を変えないようにして、そのまま待機します。電極の位置を変えると、記 録される電気信号が大きく変わり、データの再現性が悪くなるためです。
- g. 筋収縮の見られた付近の皮膚に EMG 記録用の電極を貼り付けます。導電性のペーストを付け、ビニ ールテープ等でしっかりと固定します。筋収縮によって電極が動くと、記録条件が変わり、再現性 の良いデータは得られなくなるので、電極の固定方法には十分に注意します。
- h. 増幅器の入力リード線(V₁とV₂)接地(黒のGND)を以下のように接続します。
 - V₁ → 記録電極の赤いリード線
 - V₂ → 記録電極の黒いリード線
 - GND → シールドの銅線
- i. 増幅器の出力リード線(V₀) 出力(黒のGND)を以下のように接続します。
 Vo→オシロスコープとサウンドプロセッサーのR(ワニグチクリップ)
 GND→オシロスコープとサウンドプロセッサーのGND(ワニグチクリップ)
- j. 電気刺激装置の出力を ON とし、EMG を記録します。オシロスコープやサウンドプロセッサーの表示・記録は、電気刺激装置の刺激に同期させてトリガーすると便利です。これには電気刺激装置の 背面から出力される信号をつかって trigger するしくみを使います。詳しくは、補遺資料を参照しま す。
- k. EMG の記録は、記録電極の位置でも大きく変わります。黒色(V_2)の電極を小指の付け根か掌の部分に、赤色(V_1)の電極を小指の中程に置くと記録し易くなります(赤・黒が逆でも同じ)。また、

刺激される筋肉(刺激場所による)によっても記録される筋電図の大きさや波形は大きく変わりま す。被験者によっても信号を取りやすい場合とそうでない場合があります。被験者を変えて、何通 りか試みます。雑音に対して、十分大きなシグナルのとれる条件を探します。

1. EMG 波形の記録が再現性よく繰り返すことのできる条件が確認できたら、以下の項目をチェックします。

刺激したときにのみ再現性よく観察される波形(ノイズではない部分)を確認します。電 気刺激と同時に現れるノイズと、筋の興奮として観察される信号を正確に区別します。な ぜ、そのような波形となるのか、考察します。

刺激電流の流れる方向(刺激の正負極性)を変える(出力端子の左側の押しボタン、黒の 上下のボタンで極性が変わります)と、観察波形はどのように変わるでしょうか?どのよ うに変わるべきでしょうか?なぜ、そのような変化が起こるのか、理由を考察します。

刺激強度を変えた時、観察波形はどのように変わるでしょうか? どのように変わるべきで しょうか?なぜ、そのような変化が起こるのか、理由を考察します。複数の被験者を使い、 複数のデータを記録して、刺激強度と波形の変化についての詳しい解析を行うためのデー タを収集します。刺激強度と反応の関係について、特に着目して解析し、結果をレポート にまとめます。

刺激パルスと記録波形との間の時間遅れを調べ、神経興奮伝導+興奮のシナプス伝達+筋 興奮にかかる時間を求めます。時間がわかれば、刺激電極・記録電極の間の距離を測り、 信号の伝わる速度を計算することはできますが、この計算は正しいでしょうか?

+分強い刺激強度(観察波形がそれ以上大きな変化を見せない程度の十分強い刺激)を選択し、短い時間をおいて2つの連続刺激を与えます(補遺:電気刺激装置のマニュアル参照)。2つの刺激の時間間隔を少しずつ狭くして行ったとき、EMGの信号にはどのような変化が現れるか調べます。どのように変わるべきでしょうか?なぜ、そのような変化が起こるのか、理由を考察します。また、複数の被験者を使い、複数のデータを記録して、刺激間隔と波形の変化についての詳しい解析を行うためのデータを収集します。

m. 実験が終了したら

電機刺激装置、増幅器用の電源、オシロスコープ、コンピュータの電源を OFF にします。使用した刺激用電極(白いスポンジ部分も取り外して)記録用電極の先端を 70%アルコールで拭いてグリースを取り除きます(グリースには塩が含まれているので、錆防止のため)。

オシロスコープの設定は、増幅器の性能検査の時と同じ。

誘発筋電図測定の様子

<カエル座骨神経標本の作成と神経興奮伝導速度の計測>

ここではウシガエルの腓腹筋(Gastroenemius muscle)へ至る神経(座骨神経)を、脊髄部分から大腿部まで 連続して取り出して用います。神経細胞を直接取り扱うことを経験するとともに、これまでの非破壊的な実験 (解剖や単離など試料に損傷を与えない実験)で確かめて来たことを、より直接的な方法で確認することを目 的にします。時間的に余裕のある場合、神経興奮の温度依存性についても調べます。

この実験では、神経をできるだけ損傷の少ない方法で取り出す標本作製が重要です。特に、

- ・神経を機械的に刺激しない、
- ・乾燥させない、
- ・神経をピンセットで直接摘まない、
- ・神経をむやみに引っ張らない

ように十分注意します。一度、ダメージを与えると二度と 回復しないことが多いので、標本作成を担当した学生は十 分注意します。

操作手順

a. 神経標本の単離方法は、実験期間にデモンストレーションします。ウシガエルを解剖して、右の写真の神経をできるだけ長く取り出します(C-Suppl-1~2参照)

ウシガエルの座骨神経(腹側)

取り出した座骨神経

b. 単離した神経筋標本をアクリル製チェンバー内にセットします。チェンバー底部には、カエルの生 理食塩水(リンガー液)を少量入れ、神経が乾燥しないようにします。ピンセットで神経を直接摘 むようなことはしないように十分に留意します。ただし、電極の間にリンガー液がついている場合、 刺激が効率よくできなかったり、神経興奮の記録が微弱になったりするので留意します。電極や神 経に付着している水滴などは、キムワイプなどで注意して拭き取ります。

記録用アクリル箱の中に入れたカエル座骨神経

刺激 (右)・記録用 (左) のリード線が 見える。

刺激用電極:(<u>黒・赤)のケーブルで隣</u> 接した電極に接続する。刺激の+・の 極性と、刺激する位置の対応は実験ノー トに記録を残しておく。

記録用電極:ここでは(赤・黒・青)の 順番で、隣接した電極に接続している。 逆の順番でも良いが、必ず中に黒(GND) の接続を行う。これは、記録のノイズを 減らすため。

c. 神経刺激をする箇所は、求心端側(筋肉とは反対側で脳に近い端)の電極2つを選びます。それより遠心端側(筋肉側の端)の箇所で、神経の興奮を調べます。ここでは刺激の頻度は1Hzとして、 電気刺激装置の繰り返しモード(Repeat)で刺激します。ただし、信号を測定記録する時以外は、神 経細胞の疲労をできるだけ防ぐために、無駄な刺激は行わないように注意します。写真のような記 録(波形は標本の作り方や電極位置で異なる)が再現性よく現れる刺激条件・記録箇所を選びます。

d. 以下の項目について調べます。

刺激と興奮記録の関係から、興奮が神経繊維に沿って伝播する速度を求めます。写真のように複数のピークが見られた場合、それぞれの伝播速度も求めます。できるだけ正確に伝 導速度を求めるためには、どのような工夫が必要でしょうか?

刺激強度を変えながら、測定される波形(興奮の振幅、波の数や形、遅延など)がどのよ

うに変わるか調べます。ここで用いる座骨神経には、複数の神経繊維(太さも種類も異な る)。が含まれていますが、一般に刺激が弱いと太い神経のみが先に興奮し(写真4)、刺 激を強くすると細い神経も興奮するようになり、また、興奮する神経の数も増えます。こ のことを考慮すると、刺激強度を変えた時、観察波形はどのように変わるべきでしょうか? なぜ、そのような変化が起こるのか、理由を考察します。刺激強度と波形の変化について の詳しい解析を行うためのデータを収集します。刺激強度と反応の関係について、特に着 目して解析し、結果をレポートにまとめます。

刺激する電極の極性(+/-)を変えた場合どのような波形上の変化が発生するかを見ます。 一般に、刺激電極の負極側(負極側付近)で興奮が先に起こることと考えられています(な ぜでしょうか?)。そのため、刺激の極性(+/-)を変えることで、刺激位置が変わると考 えられます。この点を考慮して、得られた実験結果を考察します。

典型的な興奮波形の見られる条件で、バットに氷を入れ、その上に神経を入れた容器ごと 載せ覆いをします。温度を徐々に下げたとき、どのような変化が起こるか観察します(こ れは時間的な余裕のある場合でよい)。温度によって最も大きく影響を受けるものは何でし ょうか?観察される波形から、変化の現れるパラメータ(電動速度、振幅、波の形や数な ど)。に着目して解析します。10 の温度変化で、どの程度の違いが出るか比で示したもの を Q₁₀ といいます(たとえば速度比や振幅比など)。データから得られたパラメータを使っ て、Q₁₀を求めます。

e. 実験が終わったら

リンガー液は海水と同じ様なもので塩分を含んでいます(組成表参照)。金属や電極を腐食 させるので、実験後は、用いた用具類(解剖用具、アクリル製箱など)は、水道水・蒸留 水・100%アルコール液の順番によく洗浄し、乾いた紙(キムタオル)の上に置いて乾かし ておきます。 レポート作成の要点:科学的な実験レポート作成上の一般原則と例

<記載形式を実験Cの重要なレポート採点基準とします>

- 一般的な科学的な作業(科学的な考え方)の流れ
 - 仮説を立てる
 - 実験で検証する
 - 仮説との整合性を議論する
 - 合致 次の発展的な仮説を立てる実験
 - 矛盾 仮説の立て直し

実習での作業手順

テキストに示された実験手順を理解して実施

- 例:神経を刺激するときの強度を変えて、それに対応してどのような変化が起こるかを調べる。 観察データの理解と記述(実験条件、時間、温度などの記録を可能な限り詳細に残す)
- 例:刺激強度の違いで変化した現象について(ピークの位置、数、振幅、広がり、ピーク間隔など) 事実を正確に記録する(実験の実施時間、被験者などの詳細)。

観察データの数値化とグラフ表示

例:ピークの数を調べて、刺激の強度との関係を表やグラフで示す。

仮説の設定()

- 例:ピークの数は、神経活動のどのような機能と直結しているかについて、理由(仮説)を考える。 仮説との整合性の議論())
- 例:立てた仮説で実験結果がどの程度説明できるか。説明できない点は何か。について議論する()。 上の議論で解決できなかった問題点の対策を考える。新しい実験を提案する()。
- 例:よりシンプルな実験系、カエルの神経などで確かめて、仮説を確認する。

レポートのまとめ方

- A 表紙:設定した仮説の内容に沿ったテーマ(下記例)を表題とする。氏名と学生証番号を明記する。
 - ・ヒト誘発筋電図の振幅と刺激強度との関係
 - ・ウシガエル誘発筋電図波形と刺激条件との関係
 - ・ウシガエル脊髄神経の興奮伝導速度の計測
 - ・ウシガエル脊髄神経の興奮伝導速度の温度依存性に関する研究
- B 要旨:上の ~ の内容に沿ったあらすじを 10 行程度の文章でまとめて要旨とする。 要旨の文章構成は次のような順序と構成にすると読み手に伝わりやすい。

(a)一般論の記述、(b)背景、(c) 言葉や実験材料の定義、(d) 結論・結果、(e) 欠点・反省、今後の展望

< 例文:実験内容とは関係ありません>

ショウジョウバエは、遺伝子の解析が進み、現在は、多くの分子生物学的な研究で多用される重要な実験動物である (a)。しかし、羽化後の生殖器の変化に関しては、詳細がわかっていない。特に生殖器の発達についての研究があまり行 われておらず、オスの生殖器内の精子がどのように成熟し、運動の活性化はそのどのような過程で起こるのかは不明で ある^(b)。野生型のキイロショウジョウバエ(*Drosophila melanogaster*)を用いて^(c)、形態観察とオス生殖器の発達に ついて調べた結果をここで報告する^(d)。オス蛹の生殖器内で、羽化2日前より徐々に精子形成が開始するが、運動が活性化するのは羽化3日後であることがわかった^(e)。実際に交尾が開始する前日までに、ほぼ精子形成は完了すると考えられる。この活性化にともなう生殖器官の構造変化、活性化因子に関しては、まだ不明の点が多く、どのような因子が活性化に関わるのか、今後の研究が必要である。

C 導入:実験の目的や背景

上の要旨の前半の導入部分の詳細をここで繰り返すことになる。しかし、単純な繰り返しでは なく、次のような構成となるように心がける。

- ・一般的な概念・事実の記述
- ・ここで明らかにしたいテーマとは何か
- ・明らかにすることで、何が解明できるか
- ・実験上の特記すべき工夫や改善点、実験の特徴
- ・どのような結果になったかの概要
- D 方法:実験材料と方法

どのような手順で、何を行ったか、可能な限り詳細を記述する。テキストの引用の場合 には、どの部分の引用か、明確にする。実験条件は、共同実験者、被験者、気温、実験 材料の処理方法などを記載。

- E 結果と考察:上の ~ を簡潔にまとめる。テーマ項目ごとに分けて、項目別の番号、小 見出しタイトルを付けて、全体構成がわかりやすいように工夫する。実験データは、もと もとの記録波形をそのまま載せることはしない。代表的な例示を1~2例示すだけで、羅 列することはしない。必ず、振幅、遅延時間など、解析データとして抽出して、グラフに して示す。考察は、小項目ごとに行っても、最後にまとめて記載しても良い。
- F 文献:この実験をまとめるに当たって、参考にした文献、教科書、web サイトなどの資料の 出典がわかるように列記する。

<参考プログラム:10 個ずつ拾い出して時間平均化するマクロ> http://www.bio.chuo-u.ac.jp/nano/books/averaging.xlsm Excel のソフトで「ツール」 「オプション」 「セュキュリティ」 「マクロセキュリティ」でセキュ リティレベルを落として使用。

<参考プログラム:記録箇所のみを抽出して表示するエクセルファイル http://www.bio.chuo-u.ac.jp/nano/books/xls/ExpC.xlsx
- ・レポートには、実験で記録した波形データ(コンピュータで記録した興奮の波形の生データ)をそのままの形で 載せたり、羅列したり記載しない。波形データから読み取った数値をもとにして、その分析(解釈)した結果 を記載する。例えば、刺激の強さを変えると、どのような点が大きく変化するのか、個々の記録データより読 み取って調べ、その結果をグラフ(横軸に刺激強度などを使う)などでわかりやすく表現するのが望ましい。
- ・例外的に、波形データを直接表示するのは、特別な理由、波形を詳細に比較する意味が明確な時、特異的な観察 例として示す必要がある時、レポート本文中で波形について言及している箇所がある場合に限る。
- この実験では、非常に膨大な量の記録データが得られる。そこから特に着目したいテーマに絞って詳しく解析す るのが望ましい。期日までに間に合わせるように注意し、各自、どのような点に着目して解析したかを明確に したうえで、レポートに仕上げること。
- ・以下のような点を考慮すると、より理解がより深まる(下の質問に1つ1つレポートで解答する必要はない)。

ヒトの誘発筋電図と、上のカエル神経興奮波形観察の実験は、操作の上はほとんど同じ実験であるが、根本的な違いがある、それは何か?

単一神経繊維を用いた実験系と、ここで行った神経繊維束を用いた実験系とでは違いは何か?

興奮の速度を求めるときは、刺激電極は固定したままで、記録電極の位置を遠ざけたり、近づけたりして 複数の記録を取る。その後、「電極間の距離 vs 時間的な遅れ」の間の関係を調べると、より正確な伝導速 度が求まる。なぜか?一箇所の記録から求める場合と、どのような点で異なるか? (添付資料:「実習に 役立つ統計学入門」参照)。

一般に、「神経の伝導速度 (神経の直径)^{1/2}」の関係がある。この点を考慮して、実験結果の中で解釈できる部分はどこか?

実験条件を同じにした場合、測定される神経や筋の電気的な反応は、常に一定となるべきか?そう考える 根拠は何か?そうならないと考える根拠は何か?この可能性を考慮した上で、実験データをどのように記 録し、どのように取り扱う事がよいか?

レポート提出期限について

「動物生理学実験 C」のレポートは、A4 サイズの用紙にまとめ、最終実験終了日から1週間後(翌週同曜日の 13:00)までに提出します。提出先は、実習実施期間は2232/2226号室へ、前半の最終週のグループは生命科学 科事務室とします。レポートには、氏名・実験実施日・グループの番号・共同実験者名を明記し、データの解 析とレポート作成は各自で行います。 付図 カエル座骨神経の断面写真、多数の神経繊維からなることがわかる。 (神経束の切片写真、氏原氏提供、スケール最小メモリは 10µm)。

付表1

リンガー液(カエル用生理食塩水)の組成表

Frog Rin	nger's Sc	lution	
NaCI	6.5 g/l	111 mM	
KCI	0.14	1.8	
$CaCI_2$	0.12	1.2	
NaHCO ₃	0.2	2.4	
<u>Glucose</u>	0.4	2.2	
		p	н 7

付表 2

繊維種別	伝導速度 (m/s)	髄鞘	求心 / 遠心	神経種別
A	47.3	有髄	遠心性	運動神経 / 感覚神経
А	28.7	有髄	求心性	感覚神経
А	19	有髄	求心性	感覚神経
А	13.6	有髄	求心性	感覚神経
B 1	16 - 8	有髄	遠心性	自律神経
B 2	1.5 - 3	有髄	遠心性	自律神経
С	0.8 - 0.3	無髄	求心性	自律神経 / 痛覚神経

カエル座骨神経の構成神経繊維とその興奮伝導速度

<筋電図の記録と解析(予備課題)>

筋誘発電位の測定と同じように、筋の自発的な活動(収縮や興奮)も、電気的な信号として調べることが できます。どのような信号として観察されるかを見ます。また、その信号と筋の発生する力との関係を調べ ます。

一般に、骨格筋の収縮は10~20Hzのバースト状の電気的な興奮(高頻度で繰り返して起こる興奮)を伴うことがわかっています。自発的な収縮では、多くの筋細胞で同じようなバースト状興奮が、タイミングをずらしながら発生します。筋電図は、その全信号の足し合わせたものとして観察されることになります。筋 誘発電位との大きな違いはこの点です。ここでは、計測される電気的な信号波形の中で、どのようなパラメ ータ(周波数、振幅、位相など)が、筋の発生する力と直接的な関係を示すのかを調べます。

ここでも、3~4 名で1組のグループを作り、各自、自分を実験台として、自発的な筋収縮にともなう筋 電図の記録を試みます。被験者、記録担当を互いに交代しながら実験をすすめます。必ずしも、筋肉の量の ある人が被験者として向いているわけではありません。

> 下の図を参考にして、前腕に記録電極を2箇所付けます。その電極と増幅器のV₁、V₂の入 力端子と接続する。

> 腕の全体を接地(GND)端子に接続した導電性マット(または、アルミ板)の上に載せま す。

> 被験者は、握力計を用いて、ほぼ一定の握力をある一定時間(計測中) 継続して発生でき るように練習します。

> さまざまな握力(0kg~出せる最大握力まで、10種類ほど)を発生中の筋電図を記録します。

発生する握力の大小によって、記録される EMG の信号はどのように変化するかをみます。 波形だけを観察したときにわかる範囲でメモを記録しておきます。同時に、観察時の条件 (被験者の名前、腕の左右、時間、出している握力など)も詳細を実験ノートに記録しま す。

発生する握力は、筋の中で興奮している細胞(筋繊維)の数に比例します。計測される信 号を処理して、どのようなパラメータを得るのが適当と考えられるでしょうか。どのよう なパラメータが、興奮している筋繊維の絶対数を直接反映するものと期待できるか、考察 します。その実験的な裏付けを得られるかどうか、データを解析します。逆の方法として、 実験的な証拠を積み上げて、経験則として、そこから結論を導く方法も可能です。

実験が終了したら、電機刺激装置、増幅器用の電源、オシロスコープを OFF にします。使用した刺激用 電極、記録用電極の先端を 70%アルコールで拭いてグリースを取りのぞきます。

ソフトの起動:右のアイコンをクリックしてプログラム(Visual Analyzer)を起動させま す。下のような主画面が現れます。この画面の設定は共通した基本設定を使いますが、 (ア)「Setting」をクリックすると、次ページのような設定画面(Main)が出てきます。その中で (イ)Open Configをクリックして、デスクトップの「basic_setting.ini」のファイルを読み込むと、初期 画面が変わって、2つの波形が表示されるようになります。

(ウ)「Default Window…」と書かれた箇所をクリックして、このソフトで処理する信号の入力装置を 指定します。ここでは、「SE-U33GX Audio (Onkyo 社のサウンドプロセッサー)」を選択します。

「Setting」をクリックし、次ページのような設定画面(Capture)を選択し、(エ)の「after crossing trigger threshold」を選択します。これは、信号の大きさがある閾値を通過したら、コンピュータへの記録

を開始するという設定です。「Trigger」は、神経興奮のような非常に速い現象に合わせてコンピュ ータを駆動させ、信号記録を開始させ上で必須の機能です。この実験では、Aチャネル(このソフ トでは、ChA(L)と表示)に入力させた同期信号(電気刺激装置から取り出したタイミングを合わせ るための信号)を使います。上の画面で、(オ)Trigはレとなっていることを確認します。(カ)のつま みをドラッグして、実際の閾値を設定します。

ここを確認	(ウ)	Ę	こを確認 ・		(イ)Open Config
ettings					
Main Spectrum Scope	Calibrate Device	Filters Colors	Capture	THD Uncertair	nty ZRLC
Main parameters (INPUT of FFT size (samples) Frequency sampling (Hz) Bandwidth: Spectral line resolution:	device) 8192 ▼ 40960 ▼ Confirm 020480 Hz 5.00 Hz	Functions Peak freq Spectrum Oscillosco Wave get Phase Volt meter	uency meter Analyser ope nerator	A and B	Save Config. Save As Jia player
Number of Channels		Check on the Internet for latest version		for latest version o	of VA
🔘 Mono 🛛 🔘	Stereo	-Delay A ch (s	amples)	-Delay B ch (sa	mples) OK
Bit depth	24 🔲 Extns	0 =	0.0000 mS	0 = 0	.0000 mS
Smoothing windows		About		Help	
Hanning	· .	9	Switch to Flo	ating Windows	Default Conf.

設定画面(Main)を開いたところ

lain	Spectrum	Scope	Calibrate	Device	Filters	Colors	Capture	THD	Uncertainty	ZRLC	
Cap	ture Scope	amples fo	r			Capture		for EDIT	window		Save Config.
1	secor	nd(s) (0 =	one input b	uffer)		10	buffer(s	:)	WINDOW		Save As
	Start cap	ture scop	be			C St	art capture	e spectru	m		Open Config
Сар	ture scope:					Samples	before sco	ope acqu	iisition point		
ØV	vith no thresh	old				1					ок
● a ◎ c	ifter crossing inly samples :	trigger th > trigger t	reshold hreshold			Buffer(s) (mS=100).00)			
Sampl	es must cros	s thresho	ld at least fo	orci	• (<u></u>)	トリナ	一設定	(必須))		Help

設定画面(Capture)を開いたところ

これまでの設定が終わった時点で、(キ)「On」をクリックすると、波形(Scope画面)が上側に、その周波数分析した結果(Spectrum画面、FFT計算結果)が下側に表示されます。他のソフトは起動している場合など、ときどき動作の不安定になることもありますが、その時は、一旦、ソフトを終了させて、 ~ の操作を繰り返します。周波数の画面は、筋電図記録のときに使用します。

誘発筋電図、あるいは、神経興奮の記録は、(ク) Capture Scopeをクリックしてから始めます。「Trig」の設定が正常に行われていると、このクリックだけでは記録は開始しません。波形画面上に「Waiting for samples...」と表示され、Ch A(L)に閾値を超える信号が入ってくるのを待っている状態になります。

ここで、刺激装置を使って刺激すると、そのタイミングに合わせて、Ch A(L)に信号が入り、はじめて、神経興奮の記録が始まることになります。このタイミングは、模式的に表すと下のようになります。

設定では、トリガー信号が入力されると、1秒間の間に、96000個のデータが自動記録されます。その後、次ページのような波形が表示されます。これで記録完了ですが、レポート作成やエクセルを使った解析のためには、データを保存する必要があります。「File」クリックして、テキスト形式で保存します。ファイル名は、実験の内容、実験番号、実験者など、実験ノートに記載した記録と対応が明確につくようにします。データの取り込み(サンプリングという)の数や速度は自由に設定可能ですが、神経の興奮は非常に短い時間の速い現象のため、48~96 kHz(1秒間に48,000~96,000 個のサンプリング)が適当です。

保存には、次の4つの種類が選択できます。「Zoom out」をクリックすると、記録された波形全体が表示されます。

(1) 「Save」: Visual Analyzer特有の形式(*.tee)で保存されます。波形データの表示や解析には便利です。

(2) 「Save as WAVE」: 音声ファイルの一般的な (wav形式) で保存されます。他のソフトとの互換性あり。

(3) 「Save as text file」: データをエクセルで読むための形式 (テキストデータ)です。画像データも同時に記録されます。

(4)「Save to clipboard」: データをコンピュータ上のメモリ内へ、画像のデータとして保存されます。他のソフト上で、「Ctrl+V」で貼り付けることができるようになります。この機能では、保存された内容は、他の同じ操作で上書きされます。

エクセルから、保存したファイルを読み込みます。その時、下のような画面が現れます。このメニュ ーから、テキストデータの読み込み方法を定義します。この作業は、毎回、行う必要があります。下 のように「カンマやタブなどの区切り文字のよって・・・」の項を選び、「次へ」をクリックします。

選択したテータは区切り文子で区切られています。 「なぁ」たわいったするか、区力スチームの形式た地安」アグ	岩さ ()	
しんべて そりりりつるかく 区 のるり 一次の形式を指定してい っ元のデータの形式	/cc// 16	
データのファイル形式を選択してください。		
⑥ カンマやタブなどの区切り文字によってフィールド ⑦ スペーフィート・アナキたはたい描きたれた国家 同: ⑦ スペーフィート・アナキたはたい描きたれた国家 同: ⑦	ごとに区切られたデータ(<u>D</u>) コンテルドのデータ(WA)	
	71 m w xw	
取り込み開始行(R): 1 🚽 元のファイル(Q)): 932:日本語(シフト JIS)	
ファイル C¥Users¥Kamimura¥Desktop¥testpp.txt の	ウ レビュー	
ファイル C¥Users¥Kamimura¥Desktop¥testpp.txt の 1 0.000000 0.009156 0.000000 0.009156	1プレビュー	
ファイル C.¥Users¥Kamimura¥Desktop¥testpp.txt の 1 0.000000 0.009156 0.000000 0.009156 2 0.010417 -0.033570 0.010417 -0.036622	プレビュー	
ファイル C¥Users¥Kamimura¥Desktop¥testpp.txtの 10.000000 0.009156 0.000000 0.009156 20.010417 -0.033570 0.010417 -0.036622 30.020833 -0.186163 0.020833 -0.186163	プレビュー	
ファイル C¥Users¥Kamimura¥Desktop¥testpp.txtの 10.000000 0.009156 0.000000 0.009156 20.010417 -0.033570 0.010417 -0.036622 30.020833 -0.186163 0.020833 -0.186163 40.031250 -0.347911 0.031250 -0.347911	ブレビュー	4
ファイル C¥Users¥Kamimura¥Desktop¥testpp.txt の 1 0.000000 0.009156 0.000000 0.009156 2 0.010417 -0.033570 0.010417 -0.036622 3 0.020833 -0.186163 0.020833 -0.186163 4 0.031250 -0.347911 0.031250 -0.347911	プレビュー	Þ

下の画面が表示されたら、区切り文字として「スペース」を選択します。データの間のスペースに、 下のような縦線が表示されます。これで読み取る準備が完了です。「完了」をクリックします。

区切り文字		
▼ タフ(1) 同 セミュロン(M)	☑ 連続した区切り文字は 1 文字として扱う(R)	
□ カンマ(C) □ スペース(S)	文字列の引用符(@): ″	
■ その他(0):		
0.000000 0.009156 0 0.010417 -0.033570 0 0.020833 -0.186163 0	000000 0.009156 010417 -0.036622 020833 -0.186163	

C - 23

エクセルの画面上でのデータ(ワークシート)を見ると、下のような表示になります。各セル内にデ ータが1つずつ入っていることを確認します。ここでは、2つのチャンネル(RとL、ChAとChB) のデータが併記される形で表示されます。A列とC列は、それぞれL(ChA)とR(ChB)の時間(波 形データの場合)または、周波数(スペクトルデータの場合)のデータです。B列とD列は、それぞ れL(ChA)とR(ChB)の信号(波形データ)データです。エクセルの上で、グラフ表示(散布図 表示)させると、Visual Analyzer と同じデータとなることも確認できます。

	- 19 - (°I -	🗄 🐴 - 🗛	- 🖏 -		<u> </u> + ≠			testpp.	txt - N
רידר	ル ホーム	挿入	ページレ	イアウ	ト数式	データ	校	調表	π,
標準	□ ∧-ÿ ¹	』 改ページ プレ ■ ユーザー設定	V	ルーラー 🔽 🕯	数式パー 目出し	Q <i>z</i> -1	4 100%	選択範[
	レイアウト 🗉	3 全画面表示		197.1	τ+-k0K I≌ .	лщо			拡え
	ブック	表示				(-A			
	A1	•	0	f_x	0				
	A	В	С		D	E		F	G
1	0	0.009156		0	0.009156				
2	0.01 041 7	-0.03357	0.01.04	117	-0.03662				
3	0.020833	-0.18616	0.0208	333	-0.18616				
4	0.03125	-0.34791	0.031	25	-0.34791				
5	0.041667	-0.4181	0.0416	67	-0.4181				
6	0.052083	-0.39674	0.0520	083	-0.39979				
7	0.0625	-0.33265	0.06	625	-0.33265				
8	0.072917	-0.28382	0.0729	917	-0.28382				
9	0.083333	-0.26856	0.0833	333	-0.26856				
10	0.09375	-0.28077	0.093	375	-0.28077				
11	0.104167	-0.26246	0.1 041	67	-0.26246				
12	0.114583	-0.18922	0.1145	583	-0.18922				
13	0.125	-0.07935	0.1	25	-0.07935				
14	0.135417	0.009156	0.1354	117	0.012207				
15	0.145833	0.04883	0.1458	333	0.045778				
16	0.15625	0.018311	0.156	625	0.018311				
17	0.166667	-0.05188	0.1666	67	-0.05493				
18	0.177083	-0.16785	0.1770	083	-0.16785				
10	01075		0.10	הרכ	-0.06046				

データ解析上の注意事項

・この実験では、データ数は、1回の記録で48,000~96,000個です。その中で必要な記録の残っている箇 所だけを選んで解析します。1日の実験で、膨大な数の数値データが集まるので、整理して解析する必要 があります。

・記録されるタイミングも実験ごとに異なります。これは、速い現象のためにコンピュータの記録開始と、 実際の電気的な信号発生が微妙にずれるためです。電気刺激の行われた時間を明確にして、それから何ミ リ秒遅れて、目標の興奮が起こっているかを調べた上で解析を進める必要があります。

・記録された信号は、いつ、どのような条件で行った実験かを明確にして、レポートには整理して記載し ます。

・得られたデータを未整理のまま、あるいは、処理もせずに、すべてレポートに順番に掲載するのは、ほ とんど意味のない作業です。必ず整理して、レポートで記述する現象、効果、反応などの例として典型的 と考えられるものだけを例示します。

・データの中で、波形の他に、振幅、信号発生のタイミング、波の数、正負のいずれの振れ、波の幅など 抽出して意味のあるパラメータは、神経興奮現象の何を議論するかによって大きく変わります。次ページ 以降の「神経興奮のしくみ(高校の教科書の抜粋です)」を参考に、レポートを作成します。

後肢の皮を剥ぐ

神経標本の作り方

腹側の様子 (背骨に沿った座骨神経)

脊髄に沿った神経の外し方 (引っ張らないように軽く持ち上げて)

座骨神経の下に糸を通して結ぶ準備

後肢背面の神経束は筋膜を切り、広げる と、筋の下に見えて来る。

神経をとり出したところ

取り出した神経の保管方法 (十分量のリンガー液に入れて)

取り出した神経をチェンバーにセット

チェンバーに電極を接続する

記録の例 (左の矩形波が刺激.興奮波形が複数観察できる)

興奮を記録する様子 (設定はヒトを使った実験と同じ.結果も同じか?)

興奮の伝導と伝達

A ニューロンの構造

ニューロンは、他のニューロンや感覚受容細胞から興奮を受け取る入力場所としての細胞体や樹 状突起、他のニューロンや効果器へと信号を出力するシナプス、その間をつなぐ細長い繊維状の神 経軸索の3つの部分からできている。軸索で、まわりを髄鞘(神経鞘)と呼ばれる構造で囲まれた ものを有髄神経繊維、囲まれていないものを無髄神経繊維と呼ぶ。有髄神経は、3~120 m/s もの速 い速度で興奮を伝えることができるのが特徴で、ヒトの体では感覚神経や筋を動かす運動神経の繊 維として多く見られる。これに対して無髄神経は 0.3~1.5 m/s のゆっくりした速度で信号を伝え、 自律神経系や温度・痛みの感覚神経に見られる。神経繊維は、大変長いものもあり、例えば、ヒト の足先の筋を収縮させる運動神経の場合、1 m もの長さを持つ。体の中のある決まった箇所から他 の箇所へと、決まった一定の方向に、遠く離れた所であっても、高速に正確な情報を伝える重要な 役割を持つ。

B 興奮のしくみ

ニューロンの興奮は、細胞膜に沿って発生する電気的な信号として伝える。その信号は、細胞膜 が**静止状態と興奮状態**との2つの状態をとることによって発生する。静止状態では、細胞膜の外側 を基準として細胞膜の内側が負の電圧、-50~-90mV となっている。この電位を**静止(膜)電位** という。安定した静止電位を発生する上で、細胞内の K⁺が細胞外に比べて多いことが不可欠であ る。この電位は、細胞の内側にガラス電極などを入れて、細胞膜の表裏で電圧差を測定することで 検出することができる。細胞の内外で測定できる、このような電位差を、**膜電位**という。

図 いろいろなニューロン 樹状突起は、興奮を細胞体の方向に伝える。

ニューロンが,他の細胞から の信号を受け取ったり,あるい は、実験で電気的な刺激を受け 取ったりすると,その部分の膜 電位が,瞬間的に負から+30~ +60mV に反転する。これが興 奮である。この状態は一瞬のも ので,すぐにもとの静止状態に 戻る性質を持っている。このよ うな膜電位の急速な変化を活 動電位という。ニューロンが, 活動電位を発生させることを神 経の興奮という。活動電位を発 生する上で,Na⁺が K⁺とは逆に細胞内で 少ないことが不可欠である。

図 活動電位と興奮(神経線維を左から右へ興奮が伝わるとき)

C 膜電位が発生するしくみ

膜電位の変化は、ニューロンの細胞膜 が持っている特別なしくみ、Na⁺、ある いは、K⁺チャネルによって行き起こされ る。イオンチャネルは、特定のイオンだ けを通す状態(開状態)と、通さない状 態(閉状態)の2つの状態を高速で行き 来する性質をニューロンの膜に含まれる タンパク質である。膜電位を発生するし くみはイオンの拡散エネルギーが原動力 となっているので拡散電位と呼ばれて いる。

図 膜電位発生のしくみ

ニューロンの内側と外側とでは Na⁺や K⁺の濃度が違い,濃度の高い方から低い方へとイオンは 自然に拡散しようとする。例えば,K⁺だけを通すチャネルだけが開くと,このチャネルは K⁺を濃 度の高い細胞の内側から外側へと通そうとする。このイオンの流れが細胞の外側を正,内側を負と する膜電位を発生させる。これが静止電位を発生するしくみである。逆に活動電位を発生するとき は,Na⁺チャネルだけが開いて,K⁺とは逆に,外側から内側へ向かって流れている状態である。チ ャネルの開閉を高速で切り換えるしくみがあるのでニューロンは 1/1000 秒もの速い速度で興奮・静 止状態を切り換えることができる。

D 全か無かの法則

1個のニューロンに着目してその膜電位の変化を見る と,右図が示すように,ニューロンに与えられた刺激の 強さが、ある強さ(**閾値**)以上ないと興奮は発生しない ことがわかっている。また、閾値よりも大きな刺激が来 ると、非常に短い時間だけ Na イオンチャネルが開状態 になり決まった大きさの活動電位が発生する。活動電位 の振幅は、刺激がどんなに強くても、一定で大きさは変 化しない。このような性質を,**全か無かの法則**という。

刺激の強さの情報

感覚器の受容細胞の発生する受容電位は、多く

の場合、刺激の強度が閾値を越えて徐々に増すと、段階的に変化することが知られている。その情 報はどのように伝わるのであろうか。感覚神経は、他のニューロンと同じように、すべて全か無か の法則にしたがって同じ大きさの活動電位を発生する。しかし、刺激の強さが大きいと、閾値をこ えて反応する感覚神経の数がふえる。さらに、1つ1つの感覚神経繊維が発生する活動電位のひん

度も高くなり,その結果,伝わる信号の頻度も増える ことになる。信号の強さは活動電位の振幅ではなく, ひん度の違いとして脳へ伝えられる。

F 神経繊維に沿った興奮の伝導

軸索の一部が興奮すると、その場所と隣接した静止 状態の部分とでは、逆方向の電位が生じ、電位の高い 方から低い方へ向かって活動電流が流れる。この電流 は静止している場所に閾値をこえる刺激を与え、そこ

2

3

4

5

la I

6

閾値

+30

-70

10

0

膜 電 位 [mV]

刺激電

流 [mA]

0

1

に活動電位が発生させる。この興奮はさらにその隣に ある静止部分を次々に刺激する。このようにして、興 奮は同じ細胞の膜に沿ってドミノ倒しのように順々に 伝わってゆくのである。これを興奮の伝導という。

興奮がすでに終わった部分では、1~2/1000 秒の短 い間、刺激に反応できない状態(不応期)になる性質 を持っている。このため、興奮が一旦終了した箇所へ 逆方向に興奮は伝わることはない。このようなしくみ で刺激を受けた場所で発生した活動電位は一方通行に しか伝導しない。

軸索のまわりが簡鞘に囲まれている有髄神経繊維 では、髄鞘が絶縁体の役割を果たすため、活動電流は 隣の絞輪部まで長い距離に渡って流れる。そのため興 奮はとびとびに跳躍するように伝導できる。これを**跳**

図 跳躍伝導のようす

躍伝導と呼ぶ。無髄神経繊維に比べて、有髄神経繊維では速い伝導速度となるのは跳躍伝導が起こ るためである。無髄神経繊維でもイカやミミズの持つ太い神経(巨大神経軸索)は伝導速度が速い。

これは、太い軸索の内部で活動電流が流れやすいため である。

F ニューロンの間の興奮の伝達

ニューロンの間では、アセチルコリン、ノルアドレ ナリン,アミノ酸などの化学物質のはたらきによって, シナプスを使って隣のニューロンへと伝えられる。こ れを興奮の伝達という。これらの化学物質は**神経伝達** 物質と呼ばれ、神経終末の中の小さな袋(シナプス小

図 ランビエ絞輪(約7500倍)

胞)の中に含まれていて、ニューロンの細胞体から末端までゆっくりと運ばれて蓄えられている。

神経の興奮が神経繊維の終 末まで伝わると,シナプス小 胞内部の伝達物質はシナプ ス間隙と呼ばれるせまい隙 間に放出される。隣のニュー ロンには,決まった神経伝達 物質にだけに結合し, 正の膜 電位を発生させる受容体があ る。受け取った神経伝達物質 の量が多いと,大きく膜電位

軸索の途中を人為的に刺激した場合

が変化し、繰り返して活動電位が発生するようになるので、隣のニューロンへは強い信号として伝 えられる。分泌された神経伝達物質は、分解されたり、神経終末で再び回収されたりして、興奮の 伝達は終了する。神経伝達物質が放出される場所は、神経終末から隣のニューロン側への一方向だ けなので、興奮の伝達は、ある決まった方向にしか起こらない。

興奮を伝えるシナプスとは逆に,隣接する細胞の興奮を抑えるような神経伝達物質を持つシナプ スも知られている。シナプスは,ニューロンの樹状突起の他に,細胞体や軸索にも観察される。特 に,脳や脊髄の中ではニューロンは,興奮を伝えたり抑えたりするシナプスを複雑に組み合わせて ネットワークをつくり,高度な情報処理を行うことができる。1つのニューロンは平均して 2,000 個のシナプスを持つと見積もられていて,中枢神経の中のニューロンの数が 10¹¹ 個あると考えられ ているので,シナプス接合の組み合わせは膨大な数となる。脳や脊髄の中で行われる複雑な処理は この様なシナプスのしくみによる。また,私たちの馴れや記憶などは,以前に起こった興奮がシナ プスの神経伝達の効率を少しずつ変化させることで、起こると考えられている。

 りナブス後細胞

 樹状突起棘

 樹状突起棘

 樹状突起

 樹状突起

 樹状突起

 樹状突起

 樹状突起

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●</t

様々なシナプスの構造(左)。視床下部のニューロンのシナプスが見えるように染色した試料(上)。1個のニューロンへ多数の入力があることがわかる。

Quizを考えて神経を理解

(1:19) (9:0) (6:10) (6:19) (6:0)

動物生理学実験 D

この実験実習では、ウニを使った初期発生の観察・精子運動の観察を行います。ウニは、周囲を海に囲まれた 日本では入手しやすい実験材料であった点、卵と精子を多量に入手できる点、体外受精を行う動物のために人工 的な受精が可能な点、卵割などの初期発生が観察しやすい点の利点があり、生物学の分野では永く使われて来ま した。ここでは、配偶子となる卵と精子を使った基礎的な観察を行います。観察には、光学顕微鏡を使います。 卵は直径 100-200 µm の大きな細胞であるのに対して、精子は長さが 50 µm、頭部が約 3 µm、鞭毛の太さはわずか 0.2 µm と細長い細胞です。観察の対象のサイズや観察目的に応じて、対物レンズの倍率や照明方法(暗視野照明・ 位相差顕微鏡)など、適切な方法を選ぶことが重要です。一般的な顕微鏡観察時の目安となる倍率は以下の通り です。小型シャーレの中に入れて直接観察する、あるいは、下図に示されたようなプレパラートを作成する場合 によっても観察倍率は異なります。

卵の受精や発生過程を観察するとき: ×4~×20 倍の対物レンズ(明視野・暗視野・位相差) 精子の形態を観察するとき: ×40 倍の対物レンズ(暗視野・位相差、カバーガラス使用) 精子の運動を観察するとき: ×10~×20 倍の対物レンズ(暗視野・位相差)

D - 1) ウニの初期発生の観察

観察の進め方

- a. はじめに、卵と精子をウニから取り出す方法をデモンストレーションします。次に各グループ(グループ分けは実験室入口ドアの掲示参照)でも同じように、採卵・採精の作業を行います。回収した卵と精子は10~20 で保存します。1日目の実験の最後に残った精子は、0.25 mLまたは1.0 mLエッペンドルフチューブ(マイクロチューブとも呼びます。MTと以下略します)に入れて、冷蔵庫内で保存して、2日目の観察にも使用します
 にも使用します
- b. 卵は海水中に放卵させて回収します。その時の海水を卵海水 と呼びます。卵海水には受精を阻害する物質が含まれるため に、集めた未受精卵は、海水で2~3回洗ったあと、10~20 (バフンウニは、10~15、ムラサキウニは15~20)で保 管します。
- c. 精子は、海水中へは放精させません。海水に希釈すると、運動が活性化して、受精できる状態になりますが、数分間で著しく運動能・受精能が低下することがわかっています。精子

は、 個体を上向きに静置して(生殖孔を上側) 放精された濃度の濃い精子液を直接ピペット(200

~1,000 µL ピペットマン使用) で吸い取って、0.25 mL または 1.0 mL MT に集めます。または、シャ ーレに生殖孔を下にして静置し 10~20 分かけて放精させ後に、MT に回収する方法もあります(この 場合、体腔液が混入する傾向あり)。このような海水に希釈する前の精子液を dry sperm と呼びます。 一般に、dry sperm は、冷蔵庫内に保存することによって 1 週間ほど、運動能や受精能を維持します。

- d. 未受精卵をまず観察します。観察には、2つの方法があります。1つは、小型のシャーレに卵を懸濁した海水を取り、蓋をせずに、そのまま×5~×10倍の対物レンズを使用して観察します。この方法は海水の中に対物レンズを浸してしまう危険性が非常に高いので、常に顕微鏡を横から眺めて、海水の面と対物レンズの先端にある程度の隙間があるように注意しながら観察します。海水量を減らすと観察しやすくなりますが、水分の蒸発による塩濃度の上昇を引き起こすので、長時間の観察には適しません。
- e. もう一つの観察方法は、スライドガラスの上に卵を含む海水を1~2滴(40~100µL、方法によって異なります)を取って、前図のような方法で観察します。このような方法は、あとで卵を回収したり、 培養を続けたりするのには適していません。しかし、細かな構造を観察するのには優れた方法です。
 ×40の対物レンズを使う場合には、カバーガラスを使用するのは必須となります。スライドガラスの 中心に、浅い凹みのあるホールスライドガラスは卵のような大きな細胞を観察するのに適しています。 しかし、ガラスの凹面がレンズのはたらきをして、暗視野照明法や位相差顕微鏡の観察には適さない こともあります。
- f. 未受精卵の構造の特徴(特に大きな特徴はないかも知れません)を観察した後、次に、受精の瞬間を 観察します。この観察には、スライドガラス上に取ったばかりの新鮮な卵を使います(位相差顕微鏡 か、暗視野照明が観察に適している)。未受精卵を確認できたら、希釈した精子液(下記参照)をごく 少量、ピペットや細いガラス棒を使って、スライドガラス上に置いた卵試料液の端に添加します。し ばらくすると精子が卵へ向かって泳いで来て受精しますので、受精膜(ウニの種によってはわかりに くい場合もあります)があがるまでの一連の変化を観察してスケッチとして残します。
- g. 精子の希釈は、10⁻²~10⁻³に希釈したものを、卵を含む海水に 10⁻²~10⁻³倍量程度加えるのを目安とし ます。卵の受精率(受精膜の形成の見られる%)は、卵の鮮度や精子の活性(受精能)に依存して大き く変わります。必要に応じて、精子濃度は、高めに、あるいは、低めに調節します。
- h. 希釈した精子は、数分でその受精能が著しく低下します。そのため、希釈後できるだけ早めに使用するように心がけます。また、容器や使用するピペット・ガラス棒などにわずかに残った精子があっても、卵が受精することもあります。一旦精子を扱った可能性のある容器類は、蒸留水や水道水で洗うことで、予期しない受精を防ぐことができます。
- i. シャーレに同様に未受精卵をとり、精子で受精します。受精の時間を記録します。ほぼ100%受精しているのを確認したら、一旦、海水を新鮮なものに交換して残った精子をできるだけ取り除くようにします。また、乾燥を防ぐために、海水の量は多めに入れて室温で保存します(直接、シャーレ内の卵を観察するときは、海水は減らします)。
- j. 実験の期間(2日間)に、その後の経時変化(卵割から胞胚期・プリズム幼生まで可能な範囲で)を 顕微鏡で観察し<u>スケッチ</u>します。室温(約20)に放置した場合に比べて、培養器内(15)に置く

と発生の速度を遅らせることができます。胞胚期(通常、12~15時間後)の胚を観察する場合、初日の実験が終了する 17:30頃に受精させ、15 培養器内に保管し、2日目の早めに使用します。

k. このテキスト内の「実習に役立つ統計学入門」や、ダウンロードした例題を参考に、各グループでウ ニの平均卵割時間(第1から第3か第4卵割くらいまで)を求めてみましょう。テキストをあらかじ め読んでおき、どのような手順でデータを収集するのが良いか各グループで話し合ってから実験を開 始してください。1日目に卵割の様子をスケッチしながら大体の時間経過をつかんでおき、定量的な 測定は2日目に行うのが良いでしょう。グループごとに全員分のデータをまとめてから数値処理を行 います。

D - 2) 精子除膜モデルの運動観察

ATP は高エネルギーリン酸結合を持ち、加水分解反応で大きな化学エネルギーを引き出すことのできる点が特徴です。エネルギーの通貨と喩えられるように、真核生物のほとんどすべての細胞活動に深く関わっています。ここでは、ウニ精子鞭毛運動を例によって、ATP の役割、特に ATP 濃度と運動の速度(鞭毛運動の 周波数)との関係を調べる実験を行います。

ATP は、細胞内に1~5mM の濃度で含まれると考えられますが、その大きな電荷(-4価)のために、細胞膜を透過できません。そのため、特別な機構で分泌されたり(一部、神経伝達物質やシグナル伝達に使われます)、細胞が壊れたりする場合を除いて、細胞外へは、ほとんど現れることのない成分です。逆に、細胞の外に、多量の ATP を与えても、細胞内部へは浸透できないので、利用されることはありません。実験的には、直接細胞の内部に注入することも可能ですが、注入量の正確な制御が難しく、定量的な解析には向いていません。より定量的な議論(ATP 濃度と細胞の活性との関係を定量的に調べる)を行うには、細胞膜を取り除いた実験系が必要となります。「除膜モデル(demembranated cell model)」とは、このような目的で使用する細胞膜を取り除いたものを一般に指す言葉です。歴史的には、サポニン(マメ科植物などに含まれる表面活性作用を持つ配糖体)やグリセリン(浸透圧の効果で細胞膜に穴を開けます)が使われて来ましたが、現在では、実験材料の種類ごとに、最適な表面活性剤(脂質を溶解する物質)と実験液(細胞内部の環境に似せた溶液)を選んで実験します。

今回の実験では、Triton X-100(注:製品名、電荷を持たないポリマー性表面活性剤)を用います。Gibbons & Gibbons(1972)によって開発された実験方法を使います。Tritonを使うので、Triton model と呼ばれてい ます。ウニ精子を0.04%(w/v)の Tritonを含む pH 緩衝溶液に入れると、30~60 秒で完全に鞭毛の運動は停 止します(Triton 処理と呼びます)。0.04%では Triton の分子は、小さな油滴(ミセル構造)を取っていると 言われていますが、そのミセルの中に細胞膜やミトコンドリアを作る脂質(コレステロールやリン脂質)が 抜き取られるためと考えられています。Triton 処理を行うと、鞭毛の細胞膜もほとんど除去され、内部の微 小管の束構造(軸糸と呼びます)が、露出していることも電子顕微鏡で確認されています。このとき ATP が 溶液の中にないと、エネルギー源となるものがないので、運動できません。このようにして作成した Triton model を使って以下の実験を行います。運動を観察するは ATP を溶液に加えます。この操作を再活性化 (reactivation)と呼びます。長時間 Triton 処理を続けると、タンパク質にも悪影響を引き起こすために、再 活性化するときは、運動観察に適した緩衝溶液の組成のものと使用するのと同時に、Triton を希釈して、濃 度を下げます。

用いる溶液の組成

○ 除膜液 (ES, extraction solution) 15 mL 培養チューブに分注して使用

 200
 mM CH₃COOK
 : 細胞内のKイオン濃度組成に似せる

 2
 mM MgSO4
 : ATPと結合し、MgATP²⁻となる

 1
 mM EGTA
 : Ca²⁺濃度を細胞内に似せて減らす

 0.1
 mM EDTA
 : 重金属などの悪影響を起こす成分の混入を防ぐと言われています

 10
 mM Tris
 : pHを 8.2 程に維持する緩衝作用

 0.04 %(w/v)^注
 Triton X-100
 : 表面活性剤(膜脂質成分を取り除く)

 1
 mM DTT
 : 酸化防止剤

 <注: w/v は重量/体積比の%の意味。液体を扱う場合、このような表記が使われることもある>

○ 再活性化液(RS, reactivation solution) 50 mL 培養チューブに分注して使用

- 200 mM CH₃COOK : 細胞内の K イオン濃度組成に似せる
 - 2 mM MgSO₄ : ATP と結合し、MgATP²⁻となる
 - 1 mM EGTA : Ca²⁺濃度を細胞内に似せて減らす
 - 0.1 mM EDTA :重金属などの悪影響を起こす成分の混入を防ぐと言われています
 - 10 mM Tris : pH を 8.2 程に維持する緩衝作用
 - 0.1 %(w/v) PEG : 粘性を高める効果、鞭毛運動を安定化する効果がある

1 mM DTT 0.1 %1 BSA

:酸化防止剂

: 鞭毛のスライドガラスへの吸着を防ぐ

0.001 ~ 1 mM ATP

○ ATP 再生系(消費された ATP を適宜補う系で、低濃度の ATP を試す際に必要) 20 unit/mL creatine kinase (CK) : ATP を生成する

> creatine phosphate (CP): リン酸基を供給する 1 mМ

$$\mathsf{CP} + \mathsf{ADP} \xrightarrow{\mathsf{CK}} \mathsf{C} + \mathsf{ATP}$$

配布された 2000 unit/mL CK と 100mM CP をそれぞれ RS で 10 倍希釈 し、それを ATP-RS に 1/10 量ずつ加える

○ フィルター海水(フィルターしてゴミを取り除いた天然海水) 1 mL MT に分注して使用、50mL ビーカーでも配布。 ○ BSA 海水(BSA 0.1%を含む天然海水) 1 mL MT に分注して使用 ○ 10mM ATP 溶液(RS) 0.25 mL MT に分注して使用 0.25 mL MT に分注して使用 • Dry sperm

溶液の準備

ウニ精子の鞭毛運動

- a. 共通物品机にある ES(除膜液) RS(再活性化液) 10 mM ATP 溶液、お よび、フィルター海水を、それぞれ、15 mL(培養チューブ)、50 mL(培 養チューブ) 0.25 mL (MT) 1 mL (MT) に入れて、各テーブルへ、1セットずつ移動します。CK、 CP はあらかじめ分注した MT を配布します。不足した場合、適宜、同じように共通物品を置いた机から 取ります。各テーブルで溶液は氷温で保存します。
- 濃度 0.001 ~ 1 mM の範囲で、ATP の希釈液を用意します。10 mM ATP 溶液を RS で希釈して、濃度 b. 0.001 ~ 1 mM (1~1,000 μM)の ATP 溶液を作ります。作成する量は 0.5~1 mL で、使用量によって、 後で作り足すこともします。ATP 濃度が 10µM 以下の場合は ATP 再生系が必要になりますので CK、CP を加えた RS を用いてください。
- c. この溶液は、ATP 濃度によって、ウニ精子の鞭毛運動がどのように変わるかを調べるために用います。 これまでの研究では、ウニ精子の鞭毛運動速度(鞭毛打運動の繰り返し周期の周波数)の ATP 濃度依存 性は、一般の酵素反応と似た傾向を示すことがわかっています。つまり、鞭毛運動の周波数は、ATP 濃 度が上昇するのに伴って上昇し、Km値100~200 uMとしたときのミカエリス・メンテン型酵素反応速 度と似た変化になると報告されています。このことを今回の実験で確かめたいと思います。
- d. この ATP 溶液の濃度は、できるだけ正確になるように工夫します。例えば、10 mM 濃度の高い溶液か

D - 6

ら、直接希釈して、1~1,000 µM のものを作る場合と、段階的に希釈して作る場合とがあります。どのような方法が一番適しているでしょうか。各グループ(各テーブル)で希釈の作業手順を決めてから開始します。各テーブルで1セット作成しますが、実験の結果を見ながら必要に応じて新しい濃度の ATP 溶液を作成しても構いません。

e. ATP は溶液内では自然に加水分解します。室温に放置すると1日で半減すると言われています。そのため ATP 溶液は必ず氷温で保存します。

除膜モデル作成の手順 (各班で1試料ずつ作成)

- a. 1 mLの MT に, フィルター海水を 5 µL 取ります。
- b. 同じピペットで、続いて dry sperm を、約1~2µL とり,海水で十分に懸濁します。ここで十分に精子懸 濁液が均一になるように攪拌します。MT(蓋をしっかり閉める)の先端を指先で数回、強くはじくと効 率よく攪拌できます。攪拌を終えたものは、氷温に冷やします。2~3分放置してから以下の作業に移り ます。
- c. 上の MT に、氷温に冷やしてある ES を 100~200 μL 加えます。この時、ES を加えた直後(数秒間)だけ、上のように MT 先端を指ではじいて、十分に攪拌します。その後は、蓋をして、氷温で 30~60 秒間、保存します。このとき、10 秒おきほどに1回の割合で、MT を上下逆にゆっくりひっくり返して、できるだけ緩やかに混ぜます(激しく振ると、精子の鞭毛が機械的なダメージを受けます)。
- d. 30~60 秒後(この処理時間によって、精子の形態や観察される精子の鞭毛運動の波形が変わることがあ ります) RS 1,000 μL を加えて、Triton を希釈します。Triton は 0.01%以下の濃度になると、ミセル構造 を取れなくなり、溶液中で分散するようになるために、脂質の溶出効果がなくなると考えられています。
- e. 上の試料を氷温(氷に直接触れるようにして十分に冷却して保存します)で静置して、作成後1時間以 内に使用します。1時間以上経過したものは廃棄します。

実験の課題

- a. Triton model を観察する前に、生きた精子を海水に適宜希釈して観察します。もちろん、dry sperm その ものでは濃すぎるので観察は不可能です。希釈率は、はじめの dry sperm の約 10⁻³~10⁻⁴ 倍のもの(1 mL MT に約 1 µL を取って 1 mL フィルター海水で希釈)をまず作成します。希釈後、急速に(数分で)運 動の活性は低下します。運動を観察するときは、希釈して何秒後・何分後の観察であるかを、実験ノー トには記録します。希釈した精子は、氷温で保存します。20~30 分以上経過したら、新しく希釈作業を 行い、可能な限り新鮮な希釈精子を使用するようにます。
- b. C-Chip (2年時の実習でも使用した計数板)を用いて精子の個数をカウントします。そのままでは濃す ぎて数えられないので希釈したものを観察し、希釈率を考えて dry sperm 1mL あたりの精子数を算出し ます。

- c. スライドガラスに BSA 海水を一滴(約30~40µL に相当します)取ります。希釈した精子液(フィルター海水に希釈したもの)の中に細いガラス棒(直径1mm 程度のガラス棒)の先端を浸します。その先端を、先に取ったスライドガラス上のBSA 海水に浸すことで、ごく微量の精子を移すことができます。
- d. 各自の顕微鏡(暗視野照明 DF または位相差顕微鏡 PH の設定で)で運動を観察します。精子は、ガラス面に付着する傾向が大変高く、スライドガラスの上で強く混ぜたり、時間が経過したりすると、そのような付着したものが増えます。一般にカバーガラスをかけて観察すると、そのようなガラス面に付着するものが著しく増えるので、運動の観察には適しません。逆に、高い倍率(対物×40以上)で観察するには、カバーガラスが必須となります。プレパラートの図(P1の図)を参考に、各自で観察方法を工夫します。観察運動は、ガラス面に沿って円を描きながら遊泳しているものを選んで観察します。中には、精子の頭部だけガラス面に付着して、運動しているケースもあります。
- e. 円を描いて遊泳している精子について、およその遊泳速度を求めるには、どのような工夫をするとよい でしょうか。数例調べて、その平均と標準偏差を求めます。この時、精子を海水に希釈して何秒経過し たものか(スライドガラス上に取って何分後かも)記録を残します。
- f. 暗視野照明ストロボ装置(全部で10台)を使って、鞭毛運動を観察します。鞭毛打の周波数を数例計測し、その標準偏差も求めます。この時、精子を海水に希釈して何秒後経過したものか、記録を残します。同時に、鞭毛の運動は、どのような波形か簡単にスケッチして記録します。ストロボ装置は、全体の台数(10台、各グループに1台)が限られているので、作業時間は短めにして、交代で使用します。
- g. スライドガラスに RS を一滴(約30~40 µL に相当します)取ります。除膜処理した精子液の中に細い ガラス棒(直径1mm 程度のガラス棒)の先端を浸します。その先端を、先に取ったスライドガラス上の RS に浸すことで、ごく微量の精子(1µL 以下)を移すことができます。精子の密度に応じて、この量は 調整します。精子の密度が高いと、観察しづらい上に、ATP を消費して濃度が急速にて低下します。最 適な精子密度を工夫します。
- h. ES で処理した精子を、上の方法で、各自の顕微鏡(暗視野照明 DF または位相差顕微鏡 PH の設定で) を用いて観察します。
- i. スライドガラスに 5~10 μM 程度の ATP 濃度の RS を一滴取り、そこに除膜精子を同様に入れて、運動 を観察します。ATP のあるなしで、どのような違いがあるでしょうか?
- j. 上の作業を、様々な ATP 濃度で行い、鞭毛の運動の周期を計測し、周波数を求めます。この作業は、必ずある濃度で 10 例以上取るようにします。その平均と標準偏差を求めます。
- k. ATP 濃度が、20 μM より上では、運動が速いために、肉眼で鞭毛打の頻度を求めることは不可能です。 ストロボ装置を使って計測します。これも 10 例以上計測して、その平均値と標準偏差を求めます。スト ロボ装置を使って得られたデータは、各グループ内で互いに共有して、解析に使用します。
- 上までのデータから(各自で計測したものとグループで共有するデータを合わせて) ATP 濃度を変える と、ウニ精子の鞭毛打の頻度はどのように変わるかをグラフで表示します。また、両逆数プロット(周 波数の逆数と濃度の逆数の関係を示したもの)も作ります。後者のグラフから、Vm値(最大周波数)と Km値(最大周波数の半分となる ATP 濃度)を求めます。

- m. 次に、運動に必要な<u>最低 ATP 濃度</u>を調べます。低い ATP 濃度では、鞭毛運動そのものによって、溶液内の ATP が急速に枯渇します。観察は、できるだけ短い時間で、運動の有無を判定するようにします。
- n. MT に 1~2 μL の除膜精子を入れます。そこに、最終濃度が 100~200 μM ATP となるように、1~2 μL の ATP を含む RS を加えます。これで、MT 内で、精子は運動を開始したと考えられます。そこへ、RS を 500~1,000 μL 急速に加えて、希釈します。希釈した液を直接スライドガラスに取って観察します。これ は、運動を急速に停止させる実験条件に相当します。運動の最中の鞭毛がそのまま止まった形で観察さ れることから rigor wave と呼ばれています。どのような波形となるか、各自の顕微鏡(暗視野照明 DF ま たは位相差顕微鏡 PH の設定で)を用いて観察し<u>スケッチ</u>します。

ウニを使った実験は、1つのレポートとしてまとめて、実験終了翌週の火曜日 13:00 に生命科学科事務 室(2331 号室)に提出します。 <資料: 周波数の測定方法>

ウニ精子の鞭毛運動は、以下のような屈曲パターンを繰り返すものです。この周波数はどのように決めるの が良いでしょうか?遅い周期であれば、1~10周期 (n) にかかる時間 (t) をストップウォッチで調べて、n/t で求めることができます。

早い運動の場合、ストロボ(一定周期で繰り返すフラッシュ照明)を使います。例えば、同じ様な周期運動 で、それにうまくストロボ照明の周期を同期させると、それ以外の波形は見えないので

このように波形が止まって見えることになります。ストロボ照明装置の周波数を変えて、精子の運動波形が 止まったように見える(同じ波形のままで円を描いて泳ぐ)周波数を探し、それが鞭毛打の周波数と同じと いうことになります。この整数倍、あるいは、整数分の1となる周波数でストロボを点灯させると、どのよ うな像が観察されるでしょうか? 参照ページ www.bio.chuo-u.ac.jp/nano/Anime/susp.html

<最後に>

この実験では、塩分を多く含む海水や緩衝溶液を多用します。塩溶液は顕微鏡に付着したままで放置すると錆た り、レンズ面にカビを繁殖させたりする原因となります。実験終了後は、以下の手順で顕微鏡のクリーニングを 行います。

- a. 試料台、コンデンサレンズ上面、照明光源の光の出口、顕微鏡の body (レンズ面以外)について: 蒸留水 を付けたキムワイプで拭き取った後、乾いたキムワイプで水分を取ります。
- b. 接眼レンズ上面とコンデンサレンズ上面:100 %アルコールを付けたレンズペーパーで拭き取ります(あまり力を加えずに軽く拭う程度)。レンズを拭いた紙で、接眼レンズの周辺のゴムキャップ部分を最後に 拭き取ります。
- c. 対物レンズの先端:蒸留水を付けた別のレンズペーパーで拭き取ります(あまり力を加えずに 1-2 回軽
 く)。その後、100 %アルコールを付けた別のレンズペーパーで拭き取ります(あまり力を加えずに 1-2 回
 軽く)。

ATP 分解を伴う実験で、ATP 濃度が~µM の非常に低い濃度で一定に維持したい場合、ATP を消費して生成されるADP を使って、自動的にATP を作る再生系を使うことが多い、一般 に、ピルビン酸キナーゼ(解糖系)や、クレアチンキナーゼ(筋の再生系酵素)などが使わ れる。この実験Dでは、上の解糖系酵素反応を利用した再生系を利用する。

溶液の種類	濃度	実験液1mLに加える量	最終使用濃度
ホスホエノールピルビン酸	100 mM	10 μL	1 mM
(PEP溶液)			
ピルビン酸キナーゼ	2 mg/mL	1 μL	2 μg/mL
(PK溶液)	(860 unit/mL)		(0.86 unit/mL) ^{<注>}

実習に役立つ統計学入門 ①

測定と誤差について

実習では、観察結果のいろいろな定量化の方法を学ぶ。個体や細胞の大きさや重量、酵素反応で生成した物質の量や濃度、DNA やポリペプチドのゲル電気泳動で移動した距離や分離して得た物質の量など、専用の測定機器を使って数値化する。個体数や行動パターンのように観察者が1つ1つカウントすることによって数値化する場合もあるだろう。実験の種目ごとに定量化の手法はさまざま異なるが、その後のデータ処理では、統計学的には同じ方法を用いる。数値データの取り扱いについて、一般的なルールをここでは解説する。

§平均値と標準偏差

右の図は、ある実験で、得られるデータの分布を示 す。 (灰色で塗ったピーク)は、生物試料の持つ元 の分布を示す。重さや長さなど、数値化できるパラメ ータの本来の分布^{注1}である。それに合わせて、実験者 が計測して求めた値の例を2つ、測定値A(破線、×) と測定値B(実線、)を示す。このように値のばら つきの程度を示すグラフを確率分布とよぶ。図の下に は、同じ計測実験を繰り返したときの1つ1つの計測 値の変動(縦方向は経過時間)の例を示す。

私たちの身長が一人一人違うように、生体試料の特性を表した元の値(ここでは*x*と書く)は、けっして同じではない。個体差や実験条件などが原因となって

ばらつき、必ずある広がりを持った分布(灰色で示された分布)となる。一般に、この分布は、正規 分布(ガウス分布)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \quad \cdot \cdot 1)$$

の形で表記することができる。この式の中の μ を平均値^{注1}(mean value、上の例では μ =40) σ を 標準偏差^{注1}(S.D.、standard deviation、上の例では σ =4)という。標準偏差は、元のばらつきの大き さ、分布の広がりを示すパラメータである。もし、私たちの測定実験の精度が非常に高く、いつも正 確な値を得られると仮定すると、測定値は右上図中の 印のデータが示すような、元の分布と同じば らつきになる。測定回数を多くすればするほど、計測した結果は、ますます、正しい元の正規分布の 様子を正確に反映するようになるであろう。データ数が多くなると、求める平均値や標準偏差が、さ

$$m = \langle \mu \rangle = \frac{1}{n} \sum_{i} x_{i}, \quad \langle \sigma^{2} \rangle = \frac{\sum_{i} (x_{i} - m)^{2}}{n - 1}$$
 $\cdot \cdot \cdot 2$) Ξ^{2}

の式を使って、 $\mu \ge \sigma$ の値を、それぞれ、計測した値から推測する。 x_i は、1つ1つの実測値(i番目の値という意味、標本^{注1}) nは測定の回数(標本数)を示す。< μ >および< σ >は、元の確率分布(式1)の中の μ 、 σ とは厳密には同じではなく、あくまで推測された値である。もとの μ や σ の予測値(期待値という)に過ぎない。<>の記号は期待値で、統計学的な処理によって得られた推定値であることを示す。エクセルの'=AVERAGE(数値1、数値2、...)'は< μ >を、'=STDEV(数値1、数値2、...)

§ 測定誤差

さて、測定値には何らかのまちがいや誤差が必ず含まれる。例えば、前ページの図の測定値A(× 印、破線の確率分布)の場合、平均の推定値< μ >が元の平均(μ)とほぼ同じであるが、測定装置 の何かの原因で、データのランダムな読み取り間違いが起こっているケースである。より大きく広が った分布となっている。このような測定を'精度(precision)の悪い計測'という。しかし、ここの例 では、平均値< μ >に関しては、もとの μ をほぼ正しく反映している。このような測定を、'正確 (accurate)である'という。精度は悪いが、正確な計測となる。測定の精度は、

$$s^{2} = \frac{\sigma^{2}}{n} = \frac{\sum_{i} (x_{i} - \mu)^{2}}{n(n-1)}$$
 ...3)

で計算される *s* を使って表現する。 *s* は標準誤差 (S.E., standard error) とよばれるパラメータで、も との平均値 μ を推定するときの精度を示すものである。複数回の測定によって、どの程度の精度で平 均値が推定できるかを示す。上の式3に示すようにで、測定の回数 *n* を多くすればするほど(測定を 繰り返す)と分母が大きくなるので、 *s* は小さくなる。これは平均値を求める精度が高くなったこと を意味する。無限に測定を繰り返すと、 *s* は限りなくゼロに近づく。前の式2で計算される<*σ*>とは まったく意味の異なるパラメータである点にじゅうぶん注意してほしい。一般に、実験で得られた結 果は

たとえば、
$$3.4 \pm 0.2$$
 (n=14)と
 $\mu \pm s$ (n=測定数)、または、 $\mu \pm \sigma$ (n=測定数)

のように、平均値±標準偏差(σ)または標準誤差(s)の形で表記する習慣である。ここで、式2 による標準偏差<σ>、あるいは、式3による標準誤差sのどちらを用いるのが適切であるかを正しく 判断し、それを明記しなければならない。生命科学の分野では、観察対象のばらつきが大きく、それ を正確に記述することが多いので、標準偏差で示すべきことが大半で、標準誤差を議論する場面はむ

しろ例外的であろう。データは標準偏差<σ>を使って 3.4±0.2 (n=14)と記述するのがもっとも一般的 で、かつ、正しい。生命科学の分野では、多くの専門的な論文でさえ、この基本的なことを理解せず に記述されていることが多い。恥ずべきことである。

例で考えてみよう。多数のタマネギ根端細胞について、そのサイズを顕微鏡観察で測定して表記す る場合には、どちらの表記方法がふさわしいだろうか、また、あるタンパク質溶液の光吸収の量(吸 光度)を繰り返して測定した場合どちらを選択すべきか、それぞれ、上の議論から判断できるであろ う。もともと、ばらつきのある試料が多数あって、その分布を推定して表現するのが< σ >である。本 来は1つの値であるべきもので、測定の都合上ばらつきが生じる場合、あるいは、計算した平均値の 精度について記述しなければならないとき、sを使わなければならない。また、このときに表記する 桁数は、桁数が多く細かければ良いものではない。以下に述べる精度や誤差を考慮しての記述となる。

§ 系統誤差

上図の測定値B(印、実線の確率分布)は、別の種類の測定誤差の見られるケースである。この 例のように、ランダムなばらつきではなく、もとの平均値から一様に、片方向へとずれるような誤差 を系統誤差(systematic error)という。この測定例Bでは測定の精度は高いが、本来の分布の右側に 決まって値を読み間違う傾向がある。その結果、平均値を推定する場合、正確さを欠くことになる。 この様な誤差が発生する要因には、次の2つが考えられる。一つは測定装置の不安定性(ドリフトと いう)の問題、もう一つは、生体試料独特の経時変化である。

前者は、装置の正確さを向上させるような工夫を行うことで解決しなければならない。一般に絶対 値が正確にわかっているもの(基準となるものさし、標準の分銅やおもり、基準濃度の溶液など)を 使って、測定方法の校正(calibration)を行う。校正によって、元の値と測定値の間の補正を行った上 で、実験に臨むことになる。測定装置が不安定で経時的な変化をどうしても除去できないこともあり、 完全な解決の難しいことも多い。吸光光度計などの機器では、スイッチを入れて 10~15 分ほど待っ てから測定を開始するが、これは装置を安定化させ、測定値の経時変化の影響をできるだけ小さくす るためである。室温の変化や空調機のオン・オフが、同じように経時的な変化を起こす原因となるこ ともある。

系統誤差のもう一つの要因は、生体試料そのものに由来することが多い。生きた生体試料を観察す る場合、観察している間に時々刻々と生き物の状態が変わる可能性を考慮しなければならない。試料 の移動・変形・疲労・老化・分解・変性・失活など活性状態の変化、熱発生・乾燥・吸水など観察条 件に起因する人為的な変化などがある。ホルマリン固定などの薬剤処理や凍結・乾燥などの操作によ って、その様な経時変化を抑えることもできるが、その処理そのものの影響が無視できないことも多 い。このような問題点は、生体試料を使った実験では常に注意を払う必要がある。正確で再現性のよ いデータを得るためには、実験の種類ごとの工夫が必要である。 § 有効数字

どのような実験でも、上に述べたような試料そのもののばらつき(標準偏差 σ)に、さらに測定誤差が上乗せされる点に注意を払わなければならない。ある測定値を表記するときに、誤差の影響を受けない数字を有効数字(effective digit)とよぶ。例えば、ある一個の細胞の長さを測定して、測定値の平均長が250.616 μ m、標準誤差が2.562 μ mと式2,3で求まった場合、平均値 ± 標準誤差は、250.616 $\pm 2.562 \mu$ m となるかもしれない。しかし、標準誤差を考えると1桁目の数字は測定を繰り返すたびに変化すると予想され、意味のない無効な数字となる。この場合、250 $\pm 3 \mu$ m と表記するのが正しい。有効数字は2桁となる。しかし、ここでは生体試料の標準偏差についての議論が抜け落ちている。多数の細胞を観察し、その平均が250.616、標準偏差が32.516であったとする。この場合、測定の誤差の大小を細かく議論することはあまり意味がない。生体試料としての正規分布の広がりを正確に表記すること、どのような大きさの分布があるのかを記述する方が正しい。測定の誤差を考慮して、250 $\pm 33 \mu$ m(標準偏差)と表記することが生物学的には正しい表記方法である。

注1 正確には、測定の対象となるグループを母集団、その分布の μ 、 σ を、それぞれ、母平均(population mean) と母標準偏差(population standard deviation)とよぶ。実験データは、その母集団から、ランダムに選んでデータを得 たもので、これを標本(sample)という。標本をもとに推定した< μ >と< σ >を、それぞれ標本平均値(sample mean) 標本標準偏差(sample standard deviation)とよぶ。

注2

$$\sum_{i} (x_{i} - m)^{2} = \sum_{i} (x_{i}^{2} - 2m \cdot x_{i} + m^{2}) =$$

$$\sum_{i} (x_{i}^{2}) - 2\sum_{i} (m \cdot x_{i}) + \sum_{i} (m^{2}) = \sum_{i} (x_{i}^{2}) - 2m\sum_{i} (x_{i}) + n \cdot m^{2} = \sum_{i} (x_{i}^{2}) - n \cdot m^{2}$$

と式の上では変形できるので、手計算で標準偏差を求めるときは、 $<\sigma^2>=rac{\sum\limits_i (x_i^2) - n \cdot m^2}{n-1}$ を使うと便利である。

演習課題

- 次の標本平均値、標本標準偏差、標準誤差を求めなさい。
 0.779, 0.633, 0.394, 0.994, 0.8, 0.194, 0.779
 0.008, 0.936, 0.339, 0.794, 0.329
- 2.次の測定値のばらつきは、標準偏差(SD)で表現すべきか、標準誤差(SE)で表現すべきか。
 - a. マイクロピペット P100 (100 μL) で、100 個マイクロチューブに分注したときのそれぞれ のサンプル溶液の量
 - b. 上の操作で、最後にマイクロピペット P100 (100 μL) で吸い取った試料溶液の重量を 10 回 精密天秤で測定した結果
 - c. ある学年の男子学生全員の身長データ
 - d. 自分の身長を3分おきで計測した24時間分のデータ
 - e. 春日通りを通過する都バスに乗車している乗客の数の分布
 - f. 10 匹のマウスに薬品 A を投与し続け、1 ヶ月後の体重と実験開始前の体重の比率
 - g. 1gの標準質量の分銅を、20回精密天秤で測定した結果
 - h. カエル座骨神経の興奮を細胞外電極で 10 回刺激して記録したときの振幅データ
 - i. 100µgの重さのタンパク質を1mLの水溶液に溶解した溶液の紫外線吸収量を10回計り直した結果。
 - j. サイコロを 100 回振って出てくる目の数の分布
 - k. ウニ卵を 100 個受精させて、それぞれで最初の卵割が起こるまでの時間

実習に役立つ統計学入門 2

最小二乗法と直線回帰

実験では、条件をさまざまに変え、そのとき生体の反応はどのようになるか調べることで、さらに 詳細な理解が得られることが多い。例えば、生物に投与する薬剤の量(x)を少しずつ変えたときに どのような反応(y)の差が現れるか、刺激の強さ(x)を変えると観察される神経の興奮の大きさ (y)はどのように変わるか、溶液に加える基質の量(x)を変えると反応の速度(y)はどのよう に変わるか・・・など、yはxでどのように変わるかの予測をおこない、それを確かめる実験を行う。 実習でもこのような実験例を多数学んだであろう。ここでは、そのような実験データで一般に使われ る直線回帰の方法と最小二乗法について解説する。科学実験では非常に基本的な解析方法である。原 理を正しく理解し、エクセルによる計算方法も習得しておくと便利である。

§直線回帰の実例

まず、実例を紹介して、その後 で原理を解説する。右図は、実験 条件を変えたとき(X_i :設定した 温度や濃度など) 結果(Y_i:測定)がどのように変化するかを 值、 示したグラフである。 X_i のiは、 何番目の測定条件であるか、 Y_i のi は、何番目の測定結果であるかを 示す。この実験では、ばらつきは あるものの、その分布から、*X*,と Y.の関係は直線関係にあると考え られるデータである。精度の善し 悪しはあるだろうが、Y = aX + bの形で表現できれば、次に新しく X_i を設定して実験せずとも、 Y_i の

値を予測することもできる。この直線を求める方法が、最小二乗法(least square method)である。理 論直線を求める作業を直線回帰(linear regression) その理論直線の正確さを示す指標が相関係数 (correlation coefficient)である。 $X_i \ge Y_i$ の関係をこのような方法で解析する作業を、「相関 (correlation)を調べる」、上のような $X_i \ge Y_i$ の関係を示すグラフを散布図(scatter diagram)という。 § エクセルを使った計算

エクセルの中の統計専用の関数には、平均値や標準偏差など、公式を使わなくても簡単に計算する 関数が多数含まれている。同じように最小二乗法も統計用の関数を使うと便利である。 $Y = aX + b \ge$ 直線をおいたときの、aを傾き(slope) $b \in Y$ 切片(y-Intercept)とよび、それぞれ、

$$m_{X} = \frac{\sum X_{i}}{n}, \quad m_{Y} = \frac{\sum Y_{i}}{n}, \quad a = \frac{\sum X_{i} \cdot Y_{i} - n \cdot m_{X} \cdot m_{Y}}{\sum X_{i}^{2} - n \cdot m_{X}^{2}}, \quad b = m_{Y} - a \cdot m_{X}$$
...4)

で計算する。 $m_x \ge m_y$ は、 $X_i \ge Y_i$ 、それぞれの平均値である。相関係数は、

$$R = \frac{\sum X_{i}Y_{i} - n \cdot m_{X} \cdot m_{X}}{\sqrt{\sum X_{i}^{2} - n \cdot m_{X}^{2}} \cdot \sqrt{\sum Y_{i}^{2} - n \cdot m_{Y}^{2}}}$$
 ... 5)

を使って計算する。エクセル上では、前図の中に示すように、傾きは「=SLOPE(C4:C19,B4:B19)」で、Y 切片は「=INTERCEPT(C4:C19,B4:B19)」で、相関係数は「=CORREL(C4:C19,B4:B19)」で計算する。このエク セルの()内の列・行の表記方法は、エクセルの「ヘルプ機能」を使って確認した上で、使用するよ う注意してほしい(C4 は C 列 4 行目のマス目(エクセルでは「セル」とよぶ)を指す。

ここで計算した $a \ge b$ を使い、< $Y_i \ge aX_i + b$ の推定値を計算する(下図内の破線)。< $Y_i \ge dX_i$ の推定値(期待値)の意味である。推定値< $Y_i \ge c$ 、実際の測定値 Y_i の値との差、 $Y_i - < Y_i \ge t$ 、推計の誤差となる。図では、この $Y_i - < Y_i \ge t$ を縦方向の短い実線で示している。

統計 7

最小二乗法とは、実測値と推計値の間の誤差が一番小さくなるようにしたもので、これは一番データに近い直線回帰であることが数学的にも証明されている。誤差を最小にするのには、それぞれの測定点で $(Y_i - \langle Y_i \rangle)^2$ を計算し、その総和、 $s = \sum (Y_i - \langle Y_i \rangle)^2$ がもっとも小さくなるように $a \ge b$ を決める。sは、上の図では、縦方向の $Y_i - \langle Y_i \rangle$ の線分長の二乗和に相当する。 $\partial s / \partial a = 0$ 、および $\partial s / \partial b = 0$

となる条件($a \lor b を 変えたときに s が極小値となる条件$)を探すと、 $a \lor b$ の答えが得られる。なぜ、上のような式(4)を使うと $a \lor b$ が計算できるのかは、統計学の専門書を参照してほしい。この式の導出は、さほど難しい作業ではないだろう。また、右側の図のように、 横方向に($X_i - \langle X_i \rangle$)²を計算し、 $s = \sum (X_i - \langle X_i \rangle)^2$ が最小となるようにX = aY + bの直線に回帰する計算を行うと、その結果はもちろん大きく異なってくる。これは、先に説明した計算例とは、何が、本質的に違うか考えてみよう。

§ 直線回帰の精度

最小二乗法の計算は、実測値と推計値の間の誤差が一番小さくなるようにしたもので、一番データ に近い直線となり、相関係数Rは、 X_i から Y_i を推定するときの「正確さ」を示すパラメータとなる。 例を3つ紹介する。

例Aは、一般的な解析例で、ばらつきは大きいが、は、 $X_i \ge Y_i$ は直線的な関係(片方が変われば、 それにつれて直線的に変化する)があることを示している。 R^2 が1に近いとき、「強い相関がある」、 0に近いときに「相関が低い」という判断を行う。ところが、解釈を行う上で、注意しなければなら ない点もある。例Bは、例Aとばらつきの程度はさほど変わらないが、Rの値は大きく異なる。これ は、 X_i の値から Y_i を推計することが大変難しいことを意味する。傾きaが小さな場合、測定の誤差 とは関係なく、相関係数は小さくなるケースである。例Cも、相関係数 R^2 は 0.7 と例Aよりは低い が、 $X_i \ge Y_i$ の間には明瞭な相関が見られるケースである。しかし、直線関係ではない。この場合に は、Y = aX + bの直線への回帰ができないので、 $Y = aX^2 + bX + c$ や $Y = aX^3 + bX^2 + cX + d$ 、あ るいは、もっと複雑な理論式に回帰させる必要があるだろう。このような計算は、前ページの計算式 のように公式を使ってaやbを求めることはできない(これを、「解析的に求められない」、「解析解 がない」という)、コンピュータを使って、計算を試行錯誤して、 $s = \sum (Y_i - \langle Y_i \rangle)^2$ がもっとも小 さくなる条件を見つける(これを「数値解を求める」という)、'R'や'SALS'などの専用の統計プログ ラム、あるいは、次節のエクセルのソルバー機能を使うことになる。このように、式5で計算する相 関係数Rの意味は、直線回帰であることが前提である点は十分注意しなければならない。

実験データを解釈する上で、相関係数Rは数学的な意味でしかない。必ずしも、因果関係を証明し ていない点にも十分に注意しなければならない。例えば、ある酵素反応の時間経過を調べているとき に、0分、1分、2分と分解される量を調べると、明らかな相関が現れ、R²~1となるケースが多い だろう。しかし、この相関関係から、「基質が酵素によって分解された」と結論することはできない。 溶液の中に入っている基質が時間とともに自然分解する性質がある場合にも、同じような相関が観察 されるからである。特に2つの変数の間に微妙な相関しか見られない場合にはじゅうぶんな注意を払 う必要がある。偶然に、2つが同じ変動をすることはないのか、慎重な判断や他の方法での検証が必 要となる。

実習に役立つ統計学入門 3

エクセルのソルバー機能を使った最小二乗法

最小二乗法を用いると、最適とされる近似式、たとえば、Y = aX + bの式に結果を当てはめると きのa + bを容易に求めることができる。同じ方法を、もっと複雑な関数、たとえば、もっと複雑な 関数、 $Y = aX^2 + bX + C + Y = a \cdot \exp(b \cdot X)^2 + cX + d$ などへも原理的には応用できる。問題は、 前節で説明したような簡単な数式でa - dなどの定数を表現できない点である。こういった関数は、 簡単な一次関数の足し合わせの関数(これを線形の関数とよぶ)ではないので非線形最小二乗法とい う。

非線形関数の最小二乗法は、かつては専用の解析ソフトやプログラムを使って解決しなければなら なかった、現在のマイクロソフト社のエクセルには、ソルバー(解法)というメニューが用意されて いて、それをうまく使用すると容易に非線形の最小二乗法が可能となる。その計算例を紹介する。

§ソルバー使用の実例

実際の操作は、エクセルのワークシートを使って解説する。まず、下のエクセルファイルをダウン ロードして、コンピュータで開く。

www.bio.chuo-u.ac.jp/nano/books/SolverSample.xls

このエクセルファイルの中にも解説を記してあるが、下がその概要である。

まず、はじめに実験の結果をどのような関数で近似したいかを決める必要があり、この関数の表記 方法は、エクセルの指定した方法にしたがう。たとえば、

$$Y = a\sin bX + cX^2 + d \qquad \cdot \cdot \cdot 6$$

などのかなり複雑なものでも

$$= C^{3*}SIN(C^{4*}B10) + C^{5*}B10^{2} + C^{6}$$

と書くだけでよい。この式の表記上の約束は、B10 が B 列 10 行目のセルに書かれたデータ X である。 \$C\$3、\$C\$4、\$C\$5、\$C\$6 は、上の式中の *a* ~ *d* に対応する定数で、C 列の 3~5 行目のセルに書か れた値をここでは使うという約束事である。この場所は、他の任意の場所に変えて指定しても良い。

「ソルバー」の機能をスタートさせると、この定数値を変えながら、探し出すべきベストな解を自動 的に見つけていく。

ここで記述した関数を使って、 X_i のデータ(B列)から Y_i を計算し、これを予測値とする($< Y_i >$ とここでは表記)。 Y_i は別個に実験で求めた値なので、その誤差($Y_i - < Y_i >$)の二乗を計算し、その合計をエクセルの表の中で、=SUM という関数で計算する。上のエクセルファイル例では、その二乗和の値は、E列7行目に書き込むように指定されている。これで準備完了である。あとはソルバー機能を開始するだけでよい。その手順(一次関数の例)を下に記す。

まず、最初に関数を確認する。エクセルファイルの「一次関数」のワークシートでは、一番簡単 な数式(Y = aX + b)が、「B10*\$C\$3+\$C\$4」、2つ目は「B11*\$C\$3+\$C\$4」、3つ目は 「B12*\$C\$3+\$C\$4」の形で表記されている。これはC列3~4のデータ($a \ge b$)をいつも使っ て、B10、B11、B12・・・と順番に X_i を使って計算することになる。この表記方法はエクセル独特 の約束事で、これを覚えた上で正確に記述する必要がある。たとえば、A10 と\$A\$10 と書いた場 合、これは、エクセルシート上でコピー・ペーストしたとき、それぞれ、セル位置の移動で変わ る部分(A10)と、固定される部分\$A\$10 の指定方法の違いである。

E列7行目に=SUMで、誤差の二乗和合計が正しく計算されていることを確認する。

次に「データ」をクリックして、ソルバーの表示(右)を出す(Excel2010)。エク セルのバージョンによっては「データ」→「分析」でソルバーを選ぶ。ただし、 あらかじめ「Excel のオプション」→「アドイン」→「設定」で \Box ソルバーアド

?₄ ソルパー ⊪ョデータ分析 分析

インを使うという設定にして おく必要がある。

「ソルバー」をクリックすると 右の画面が表示され、ここでパ ラメータを確認して、「解決」 のクリックで計算を実行する。 ここでのパラメータの設定方 法の詳細は、ダウンロードした ファイルの中で、「一次関数」 のワークシートに書かれた手 順書を参照にする。

ソルバーのパラメーター	最小とするセルの位置	x
目的セルの設定(1)		
目標値: 🔘 最大値(M) 💿 最小値(N) 🔘 :	指定値()	
変数セルの変更(B)		
\$C\$3:\$C\$5 ここは!	必ず最小値	
制約条件の対象:(山)		
	1 追加(A)	
変化させるパラメータの位置	変更(<u>C</u>)	
	すべてリセット(B)	
	▼ 読み込み/保存(し	
✓ 制約のない変数を非負数にする(K)		
解決方法の選択(E) GRG 非線)	形 オプション(P)	
解決方法		
清らかな非線形を示すソ レックスエンジン、清らか ここで計算	、線形を示すソルバー問題には LP シン 軍開始 ちエボリューショナリー エンジンを選択して	7
/20010	- 1	
	解決(5) 閉じる(0)	

エクセルのソルバーは、かなり複雑な関数であっても最小二乗法を実施できる。実験データを解析 する上で大変便利な機能である。上でダウンロードしたファイル内には、ウニ受精卵の卵割のタイミ ングを調べた実験結果を正規累積分布関数に近似して、平均卵割時を推定する例題も用意されている (下のワークシート)。

正規累積分布関数は、一般に

$$erf(X) = a \int_{0}^{X} exp(-\frac{(T-b)^{2}}{2c^{2}}) dT = \frac{\text{SC}5^{*}NORM.DIST(B10.SCS3.SCS4.1)}{2c^{2}} \cdots 8$$

と表現される複雑な関数で、正規分布(「測定と誤差について」参照)を積算したS字型カーブである。エクセルの上では、上の<u>右側</u>のような表記で書き、ソルバーを使った解法が可能となる。このように、ソルバーの応用範囲は無限といって良いほど広い。今回の実習の機会に習得することをおすすめしたい。サンプルのエクセルファイルの中には、指数関数への回帰の例も含めた。

エクセルシートの中のウニ卵割時間を求める例題(赤破線矢印はセル内の表記例)

練習課題(1) 下のデータは、ウニ胚の第一卵割を起こした比率(%)をある時間間隔で調べた結果 である。このデータをもとに、上のソルバー機能を使って、ウニ胚の平均卵割時(受精後何分か)を 求めよ。

受精後の時間	卵割が完了した
(分)	卵の比率(%)
0	0.0
5	0.0
10	5.1
25	10.0
30	18.3
40	27.7
45	44.7
50	46.0
55	69.3
60	76.7
70	84.0
75	90.0
80	95.0

練習課題(2) 上では卵割を起こした比率(%)を一定時間おきに調べて、それを正規累積分布関数 に近似する方法を紹介した。しかし、実際は、ある卵に注目して、それが受精後何分で第一卵割を起 こしたかという時間のデータを蓄積する方がデータを得やすいかも知れない。その場合、データは

卵の番号	第一卵割	第二卵割
1	45	61 (分)
2	40	58
3	42	50
4	46	65
•	•	•
•	•	•
•	•	•
•	•	•

となると考えられる。このようなデータを直接使って、ソルバー機能を活用し、平均の第一卵割時間 や第二卵割時間を求めるにはどのようなデータ処理するのがよいだろうか(もちろん、このようなデ ータが十分な数あれば、卵割%に表現し直し、上のワークシートで同じように解決できるはずである が)?どのような関数をワークシートの中で定義して、ソルバーに解かせるのが良いか?